I am working in R with a long table stored as a data.table
containing values obtained in value changes for variables of numeric and character type. When I want to perform some functions like correlations, regressions, etc. I have to convert the table into wide format and homogenise the timestamp frequency.
I found a way to convert the long table to wide, but I think is not really efficient and I would like to know if there is a better more data.table
native approach.
In the reproducible example below, I include the two options I found to perform the wide low transformation and in the comments I indicate what parts I believe are not optimal.
library(zoo)
library(data.table)
dt<-data.table(time=1:6,variable=factor(letters[1:6]),numeric=c(1:3,rep(NA,3)),
character=c(rep(NA,3),letters[1:3]),key="time")
print(dt)
print(dt[,lapply(.SD,typeof)])
#option 1
casted<-dcast(dt,time~variable,value.var=c("numeric","character"))
# types are correct, but I got NA filled columns,
# is there an option like drop
# available for columns instead of rows?
print(casted)
print(casted[,lapply(.SD,typeof)])
# This drop looks ugly but I did not figure out a better way to perform it
casted[,names(casted)[unlist(casted[,lapply(lapply(.SD,is.na),all)])]:=NULL]
# I perform a LOCF, I do not know if I could benefit of
# data.table's roll option somehow and avoid
# the temporal memory copy of my dataset (this would be the second
# and minor issue)
casted<-na.locf(casted)
#option2
# taken from http://stackoverflow.com/questions/19253820/how-to-implement-coalesce-efficiently-in-r
coalesce2 <- function(...) {
Reduce(function(x, y) {
i <- which(is.na(x))
x[i] <- y[i]
x},
list(...))
}
casted2<-dcast(dt[,coalesce2(numeric,character),by=c("time","variable")],
time~variable,value.var="V1")
# There are not NA columns but types are incorrect
# it takes more space in a real table (more observations, less variables)
print(casted2)
print(casted2[,lapply(.SD,typeof)])
# Again, I am pretty sure there is a prettier way to do this
numericvars<-names(casted2)[!unlist(casted2[,lapply(
lapply(lapply(.SD,as.numeric),is.na),all)])]
casted2[,eval(numericvars):=lapply(.SD,as.numeric),.SDcols=numericvars]
# same as option 1, is there a data.table native way to do it?
casted2<-na.locf(casted2)
Any advice/improvement in the process is welcome.
I'd maybe do the char and num tables separately and then rbind:
k = "time"
typecols = c("numeric", "character")
res = rbindlist(fill = TRUE,
lapply(typecols, function(tc){
cols = c(k, tc, "variable")
dt[!is.na(get(tc)), ..cols][, dcast(.SD, ... ~ variable, value.var=tc)]
})
)
setorderv(res, k)
res[, setdiff(names(res), k) := lapply(.SD, zoo::na.locf, na.rm = FALSE), .SDcols=!k]
which gives
time a b c d e f
1: 1 1 NA NA NA NA NA
2: 2 1 2 NA NA NA NA
3: 3 1 2 3 NA NA NA
4: 4 1 2 3 a NA NA
5: 5 1 2 3 a b NA
6: 6 1 2 3 a b c
Note that OP's final result casted2
, differs in that it has all cols as char.