In CNTK example (CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy) the data look likes: get_stock_data
I have try pd.read_csv to read my own csv data:
url = 'http://localhost/csv/SPY0.csv'
data = pd.read_csv(url)
data.tail(5)
...the result: pandas.read_csv
Question is: How csv column format like "get_stock_data" does?
You need add parameter index_col
for read column to index
in read_csv
.
Also you can convert index
to DatetimeIndex
by parse_dates
.
#convert first column to index (python counts from 0)
data = pd.read_csv(url, index_col=[0], parse_dates=[0])
#convert column with name Date to index
data = pd.read_csv(url, index_col=['Date'], parse_dates=['Date'])
Another solution is use to_datetime
and set_index
:
data = pd.read_csv(url)
data['Date'] = pd.to_datetime(data['Date'])
data = data.set_index('Date')