I'm experimenting with OpenCL (through Cloo's C# interface). To do so, I'm experimenting with the customary matrix-multiplication-on-the-GPU. The problem is, during my speed tests, the application crashes. I'm trying to be efficient regarding the the re-allocation of various OpenCL objects, and I'm wondering if I'm botching something in doing so.
I'll put the code in this question, but for a bigger picture, you can get the code from github here: https://github.com/kwende/ClooMatrixMultiply
My main program does this:
Stopwatch gpuSw = new Stopwatch();
gpuSw.Start();
for (int c = 0; c < NumberOfIterations; c++)
{
float[] result = gpu.MultiplyMatrices(matrix1, matrix2, MatrixHeight, MatrixHeight, MatrixWidth);
}
gpuSw.Stop();
So I'm basically doing the call NumberOfIterations times, and timing the average execution time.
Within the MultiplyMatrices call, the first time through, I call Initialize to setup all the objects I'm going to reuse:
private void Initialize()
{
// get the intel integrated GPU
_integratedIntelGPUPlatform = ComputePlatform.Platforms.Where(n => n.Name.Contains("Intel")).First();
// create the compute context.
_context = new ComputeContext(
ComputeDeviceTypes.Gpu, // use the gpu
new ComputeContextPropertyList(_integratedIntelGPUPlatform), // use the intel openCL platform
null,
IntPtr.Zero);
// the command queue is the, well, queue of commands sent to the "device" (GPU)
_commandQueue = new ComputeCommandQueue(
_context, // the compute context
_context.Devices[0], // first device matching the context specifications
ComputeCommandQueueFlags.None); // no special flags
string kernelSource = null;
using (StreamReader sr = new StreamReader("kernel.cl"))
{
kernelSource = sr.ReadToEnd();
}
// create the "program"
_program = new ComputeProgram(_context, new string[] { kernelSource });
// compile.
_program.Build(null, null, null, IntPtr.Zero);
_kernel = _program.CreateKernel("ComputeMatrix");
}
I then enter the main body of my function (the part that will be executed NumberOfIterations times).
ComputeBuffer<float> matrix1Buffer = new ComputeBuffer<float>(_context,
ComputeMemoryFlags.ReadOnly| ComputeMemoryFlags.CopyHostPointer,
matrix1);
_kernel.SetMemoryArgument(0, matrix1Buffer);
ComputeBuffer<float> matrix2Buffer = new ComputeBuffer<float>(_context,
ComputeMemoryFlags.ReadOnly | ComputeMemoryFlags.CopyHostPointer,
matrix2);
_kernel.SetMemoryArgument(1, matrix2Buffer);
float[] ret = new float[matrix1Height * matrix2Width];
ComputeBuffer<float> retBuffer = new ComputeBuffer<float>(_context,
ComputeMemoryFlags.WriteOnly | ComputeMemoryFlags.CopyHostPointer,
ret);
_kernel.SetMemoryArgument(2, retBuffer);
_kernel.SetValueArgument<int>(3, matrix1WidthMatrix2Height);
_kernel.SetValueArgument<int>(4, matrix2Width);
_commandQueue.Execute(_kernel,
new long[] { 0 },
new long[] { matrix2Width ,matrix1Height },
null, null);
unsafe
{
fixed (float* retPtr = ret)
{
_commandQueue.Read(retBuffer,
false, 0,
ret.Length,
new IntPtr(retPtr),
null);
_commandQueue.Finish();
}
}
The third or fourth time through (it's somewhat random, which hints at memory access issues), the program crashes. Here is my kernel (I'm sure there are faster implementations, but right now my goal is just to get something working without blowing up):
kernel void ComputeMatrix(
global read_only float* matrix1,
global read_only float* matrix2,
global write_only float* output,
int matrix1WidthMatrix2Height,
int matrix2Width)
{
int x = get_global_id(0);
int y = get_global_id(1);
int i = y * matrix2Width + x;
float value = 0.0f;
// row y of matrix1 * column x of matrix2
for (int c = 0; c < matrix1WidthMatrix2Height; c++)
{
int m1Index = y * matrix1WidthMatrix2Height + c;
int m2Index = c * matrix2Width + x;
value += matrix1[m1Index] * matrix2[m2Index];
}
output[i] = value;
}
Ultimately the goal here is to better understand the zero-copy features of OpenCL (since I'm using Intel's integrated GPU). I have been having trouble getting it to work and so wanted to step back a bit to see if I understood even more basic things...apparently I don't as I can't get even this to work without blowing up.
The only other thing I can think of is it's how I'm pinning the pointer to send it to the .Read() function. But I don't know of an alternative.
Edit:
For what it's worth, I updated the last part of code (the read code) to this, and it still crashes:
_commandQueue.ReadFromBuffer(retBuffer, ref ret, false, null);
_commandQueue.Finish();
Edit #2
Solution found by huseyin tugrul buyukisik (see comment below).
Upon placing
matrix1Buffer.Dispose();
matrix2Buffer.Dispose();
retBuffer.Dispose();
At the end, it all worked fine.
OpenCl resources like buffers, kernels and commandqueues should be released after other resources that they are bound-to are released. Re-creating without releasing depletes avaliable slots quickly.
You have been re-creating arrays in a method of gpu
and that was the scope of opencl buffers. When it finishes, GC cannot track opencl's unmanaged memory areas and that causes leaks, which makes crashes.
Many opencl implementations use C++ bindings which needs explicit release commands by C#, Java and other environments.
Also the set-argument part is not needed many times when repeated kernel executions use exact same buffer order as parameters of kernel.