I have the following dataset
client_id <- c("A", "A", "B", "B", "B", "B", "B", "A", "A", "B", "B")
value <- c(10, 35, 20, 30, 50, 40, 30, 40, 30, 40, 10)
period_30 <- c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
period_60 <- c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
sign <- c("D", "D", "D", "D", "C", "C", "C", "D", "D", "D", "D")
data <- data.frame(client_id, value, period_30, period_60, sign)
I can use this code to count the number of different splits per given period with the code below:
library(data.table)
test<- dcast(setDT(data), client_id ~ paste0("period_30", sign), value.var = "period_30", sum)
But I would like to also calculate the value as per the different splits.
The expected outcome would look like this:
client_id av.value_period_30_sign_D av.value_period_60_sign_D av.value_period_30_sign_C av.value_period_30_sign_D
A 34.16667 NaN NaN NaN
B 30.00000 34.16667 NaN 27.50000
And then, it should be extendable to additional splits, like average value of sign X, of type X in period 1.
I am not sure if the desired output is doable with this approach. But I was looking at the fun.aggregate
argument. Perhaps it could be used in combination with multiple value.var
arguments?
Update: Joel's code answers the first part of the question.
client_id sign period_30 period_60
A D 34.16667 34.16667
B D 30.00000 34.16667
B C NaN 27.50000
But how do I transpose the variables and assign the names as per the splits automatically?
another method(would be faster) is using data.table
Based on the edit made to the question :(hope the code is self explanatory now)
library(data.table)
data1 <- setDT(data)[, lapply(.SD, function(x) mean(value[x==1])),
.SDcols = period_30:period_60,
by = .(client_id, sign)]
# `dcast` if also from `data.table` package
dcast(data1, client_id~sign, drop = FALSE, value.var = c("period_30", "period_60"))
# client_id period_30_C period_30_D period_60_C period_60_D
#1: A NA 34.16667 NA 34.16667
#2: B NaN 30.00000 27.5 34.16667