Search code examples
pythonpandasin-place

Inplace transformation pandas with groupby


Would it be possible to mutate DataFrame inplace with groupby statement?

import pandas as pd
dt = pd.DataFrame({
                   "LETTER": ["a", "b", "c", "a", "b"],
                   "VALUE" : [10 , 12 , 13,  0,  15]
                   })
def __add_new_col(dt_):
    dt_['NEW_COL'] = dt_['VALUE'] - dt_['VALUE'].mean()
    return dt_
pass


dt.groupby("LETTER").apply(__add_new_col)
  LETTER  VALUE  NEW_COL
0      a     10      5.0
1      b     12     -1.5
2      c     13      0.0
3      a      0     -5.0
4      b     15      1.5


dt
  LETTER  VALUE
0      a     10
1      b     12
2      c     13
3      a      0
4      b     15

In R data.table it is possible by using := operator e.g. dt[, col := ... , by ='LETTER']


Solution

  • I think you can use transform which return Series same length and same index as df with substracting:

    print (dt.groupby("LETTER")['VALUE'].transform('mean'))
    0     5.0
    1    13.5
    2    13.0
    3     5.0
    4    13.5
    Name: VALUE, dtype: float64
    
    dt['NEW_COL'] = dt['VALUE'] - dt.groupby("LETTER")['VALUE'].transform('mean')
    print (dt)
      LETTER  VALUE  NEW_COL
    0      a     10      5.0
    1      b     12     -1.5
    2      c     13      0.0
    3      a      0     -5.0
    4      b     15      1.5