i have a dataframe with NaN values. i want to replace that NaN values to CAGR values
val1 val2 val3 val4 val5
0 100 100 100 100 100
1 90 110 80 110 50
2 70 150 70 NaN NaN
3 NaN NaN NaN NaN NaN
CAGR(compound annual growth rate) = (end value / first value) ** (1/number of years)
for example, val1's CAGR is -23%. so the last value of val1 will be 53.9
the column val4's CAGR value is 10%
so row2 NaN will be 121 and row3 NaN replace as 133
how can i replace NaN automatically?
the questions is
1) how can i calculate CAGR each columns?
i used isnull() so, i found which row is empty. but i don't know how to except the row to calculate CAGR.
2) how can i replace NaN with calculated values?
thank you.
from __future__ import division # for python2.7
import numpy as np
# tab delimited data
a = '''100 100 100 100 100
90 110 80 110 50
70 150 70 NaN NaN
NaN NaN NaN NaN NaN
'''
# parse and make a numpy array
data = np.array( [[np.nan if aaa=='NaN' else int(aaa) for aaa in aa.split('\t')] for aa in a.splitlines()] )
for col in range(5):
Nyears = np.isnan(data[:,col]).argmax()-1 # row index for the last non-NaN value
endvalue = data[Nyears,col]
cagr = (endvalue / 100) ** (1 / Nyears)
print Nyears, endvalue, cagr
for year in np.argwhere(np.isnan(data[:,col])):
data[year,col] = data[year-1,col] * cagr
print data
I get:
[[ 100. 100. 100. 100. 100. ]
[ 90. 110. 80. 110. 50. ]
[ 70. 150. 70. 121. 25. ]
[ 58.56620186 183.71173071 58.56620186 133.1 12.5 ]]