Search code examples
rdplyraggregatesummarize

group-wise summaries/subsets dplyr


I have a data set of two courses in 2 different semesters that takes the following form:

set.seed(200)
sem <- sample(c("1", "2"), 200, replace = T)
course <- sample(c("1", "2"), 200, replace = T)
d.gender = sample(c(0, 1), 200, replace = T, prob = c(0.6, 0.4))
d.pass = sample(c(0, 1), 200, replace = T, prob = c(0.7, 0.3))
df <- data.frame(sem, course, d.gender, d.pass)

I'm trying to efficiently create a tbl of the 4 different sem,course combinations along with their total pass rate, the percentage of d.gender = 1, and finally the pass rates within those the 2 gender categories. I can make a table that provides all the values I need to calculate, but I know there's a more efficient way to calculate what I need without nesting a bunch of different group_by and summary functions, or making a whole bunch of different tbls and left_joining the columns I want. I can get what I need grinding away with indices and subset functions, but I'm hopeful that there is a better way to get a 4-row matrix with everything I need but it's ugly and takes forever, and it's easy to make mistakes in the code:

df1 <- df %>% group_by(sem, course, d.gender, d.pass) %>% summarize(total = n())
df1$total_pass <- rep(NA, dim(df1)[1])
df1$total_pass[1:4] <- sum(subset(df1, sem == "1" & course == "1" & d.pass == "1", 
    select = total))
df1$total_pass[5:8] <- sum(subset(df1, sem == "1" & course == "2" & d.pass == "1", 
    select = total))
df1$total_pass[9:12] <- sum(subset(df1, sem == "2" & course == "1" & d.pass == "1", 
    select = total))
df1$total_pass[13:16] <- sum(subset(df1, sem == "2" & course == "2" & d.pass == "1", 
    select = total))

df1$n_male <- rep(NA, dim(df1)[1])
df1$n_male[1:4] <- sum(subset(df1, sem == "1" & course == "1" & d.gender == "1", 
    select = total))
df1$n_male[5:8] <- sum(subset(df1, sem == "1" & course == "2" & d.gender == "1", 
    select = total))
df1$n_male[9:12] <- sum(subset(df1, sem == "2" & course == "1" & d.gender == "1", 
    select = total))
df1$n_male[13:16] <- sum(subset(df1, sem == "2" & course == "2" & d.gender == "1", 
    select = total))

df1$n_fem <- rep(NA, dim(df1)[1])
df1$n_fem[1:4] <- sum(subset(df1, sem == "1" & course == "1" & d.gender == "0", select = total))
df1$n_fem[5:8] <- sum(subset(df1, sem == "1" & course == "2" & d.gender == "0", select = total))
df1$n_fem[9:12] <- sum(subset(df1, sem == "2" & course == "1" & d.gender == "0", 
    select = total))
df1$n_fem[13:16] <- sum(subset(df1, sem == "2" & course == "2" & d.gender == "0", 
    select = total))

df1$pct_male <- rep(NA, dim(df1)[1])
df1$pct_male[1:4] <- df1$n_male[1:4]/sum(subset(df1, sem == "1" & course == "1", 
    select = total))
df1$pct_male[5:8] <- df1$n_male[5:8]/sum(subset(df1, sem == "1" & course == "2", 
    select = total))
df1$pct_male[9:12] <- df1$n_male[9:12]/sum(subset(df1, sem == "2" & course == "1", 
    select = total))
df1$pct_male[13:16] <- df1$n_male[13:16]/sum(subset(df1, sem == "2" & course == "2", 
    select = total))

df1$pct_fem <- rep(NA, dim(df1)[1])
df1$pct_fem <- 1 - df1$pct_male

df1$pct_pass <- rep(NA, dim(df1)[1])
df1$pct_pass[1:4] <- df1$total_pass[1:4]/sum(subset(df1, sem == "1" & course == "1", 
    select = total))
df1$pct_pass[5:8] <- df1$total_pass[5:8]/sum(subset(df1, sem == "1" & course == "2", 
    select = total))
df1$pct_pass[9:12] <- df1$total_pass[9:12]/sum(subset(df1, sem == "2" & course == 
    "1", select = total))
df1$pct_pass[13:16] <- df1$total_pass[13:16]/sum(subset(df1, sem == "2" & course == 
    "2", select = total))

df1$male_pass_pct <- rep(NA, dim(df1)[1])
df1$male_pass_pct[1:4] <- subset(df1, sem == "1" & course == "1" & d.gender == "1" & 
    d.pass == "1", select = total)/df1$n_male[1:4]
df1$male_pass_pct[5:8] <- subset(df1, sem == "1" & course == "2" & d.gender == "1" & 
    d.pass == "1", select = total)/df1$n_male[5:8]
df1$male_pass_pct[9:12] <- subset(df1, sem == "2" & course == "1" & d.gender == "1" & 
    d.pass == "1", select = total)/df1$n_male[9:12]
df1$male_pass_pct[13:16] <- subset(df1, sem == "2" & course == "2" & d.gender == 
    "1" & d.pass == "1", select = total)/df1$n_male[13:16]

df1$fem_pass_pct <- rep(NA, dim(df1)[1])
df1$fem_pass_pct[1:4] <- subset(df1, sem == "1" & course == "1" & d.gender == "0" & 
    d.pass == "1", select = total)/df1$n_fem[1:4]
df1$fem_pass_pct[5:8] <- subset(df1, sem == "1" & course == "2" & d.gender == "0" & 
    d.pass == "1", select = total)/df1$n_fem[5:8]
df1$fem_pass_pct[9:12] <- subset(df1, sem == "2" & course == "1" & d.gender == "0" & 
    d.pass == "1", select = total)/df1$n_fem[9:12]
df1$fem_pass_pct[13:16] <- subset(df1, sem == "2" & course == "2" & d.gender == "0" & 
    d.pass == "1", select = total)/df1$n_fem[13:16]


df2 <- df1 %>% 
    group_by(sem, course) %>% 
    summarize(total_pass = first(total_pass), 
              pct_pass = first(pct_pass), 
              n_male = first(n_male), 
              n_fem = first(n_fem), 
              pct_male = first(pct_male), 
              pct_fem = first(pct_fem), 
              male_pass_pct = first(male_pass_pct), 
              fem_pass_pct = first(fem_pass_pct))

df2 <- unique(df1[, c(1, 2, 6, 11, 7:10, 12, 13)])
df2[, c(9, 10)] <- lapply(df2[, c(9, 10)], as.numeric)

that's really laborious for only needing measures for 4 rows, but I can't get it to work otherwise for this aggregation... Any help would be awesome


Solution

  • Just group and then summarise the original. You can use n() to reference the number of rows in a group, and can reference variables that have been previously created in summarise, which lets you do

    df %>% group_by(sem, course) %>% 
        summarise(total_pass = sum(d.pass), 
                  n_male = sum(d.gender), 
                  n_fem = sum(d.gender == 0), 
                  pct_male = n_male / n(), 
                  pct_fem = n_fem / n(), 
                  pct_pass = total_pass / n(), 
                  male_pass_pct = sum(d.gender & d.pass) / n_male, 
                  fem_pass_pct = sum(d.gender == 0 & d.pass) / n_fem)
    
    ## Source: local data frame [4 x 10]
    ## Groups: sem [?]
    ## 
    ##      sem course total_pass n_male n_fem  pct_male   pct_fem  pct_pass male_pass_pct fem_pass_pct
    ##   <fctr> <fctr>      <dbl>  <dbl> <int>     <dbl>     <dbl>     <dbl>         <dbl>        <dbl>
    ## 1      1      1         14     20    30 0.4000000 0.6000000 0.2800000    0.25000000    0.3000000
    ## 2      1      2          7     19    26 0.4222222 0.5777778 0.1555556    0.05263158    0.2307692
    ## 3      2      1         12     23    23 0.5000000 0.5000000 0.2608696    0.30434783    0.2173913
    ## 4      2      2         16     25    34 0.4237288 0.5762712 0.2711864    0.20000000    0.3235294
    

    Reshaping your data to move gender from column headers to an actual variable will make your data tidier and require fewer operations, if you like.