Search code examples
pythonpython-3.xpandasnltkpos-tagger

How to apply pos_tag_sents() to pandas dataframe efficiently


In situations where you wish to POS tag a column of text stored in a pandas dataframe with 1 sentence per row the majority of implementations on SO use the apply method

dfData['POSTags']= dfData['SourceText'].apply(
                 lamda row: [pos_tag(word_tokenize(row) for item in row])

The NLTK documentation recommends using the pos_tag_sents() for efficient tagging of more than one sentence.

Does that apply to this example and if so would the code be as simple as changing pso_tag to pos_tag_sents or does NLTK mean text sources of paragraphs

As mentioned in the comments pos_tag_sents() aims to reduce the loading of the preceptor each time but the issue is how to do this and still produce a column in a pandas dataframe?

Link to Sample Dataset 20kRows


Solution

  • Input

    $ cat test.csv 
    ID,Task,label,Text
    1,Collect Information,no response,cozily married practical athletics Mr. Brown flat
    2,New Credit,no response,active married expensive soccer Mr. Chang flat
    3,Collect Information,response,healthy single expensive badminton Mrs. Green flat
    4,Collect Information,response,cozily married practical soccer Mr. Brown hierachical
    5,Collect Information,response,cozily single practical badminton Mr. Brown flat
    

    TL;DR

    >>> from nltk import word_tokenize, pos_tag, pos_tag_sents
    >>> import pandas as pd
    >>> df = pd.read_csv('test.csv', sep=',')
    >>> df['Text']
    0    cozily married practical athletics Mr. Brown flat
    1       active married expensive soccer Mr. Chang flat
    2    healthy single expensive badminton Mrs. Green ...
    3    cozily married practical soccer Mr. Brown hier...
    4     cozily single practical badminton Mr. Brown flat
    Name: Text, dtype: object
    >>> texts = df['Text'].tolist()
    >>> tagged_texts = pos_tag_sents(map(word_tokenize, texts))
    >>> tagged_texts
    [[('cozily', 'RB'), ('married', 'JJ'), ('practical', 'JJ'), ('athletics', 'NNS'), ('Mr.', 'NNP'), ('Brown', 'NNP'), ('flat', 'JJ')], [('active', 'JJ'), ('married', 'VBD'), ('expensive', 'JJ'), ('soccer', 'NN'), ('Mr.', 'NNP'), ('Chang', 'NNP'), ('flat', 'JJ')], [('healthy', 'JJ'), ('single', 'JJ'), ('expensive', 'JJ'), ('badminton', 'NN'), ('Mrs.', 'NNP'), ('Green', 'NNP'), ('flat', 'JJ')], [('cozily', 'RB'), ('married', 'JJ'), ('practical', 'JJ'), ('soccer', 'NN'), ('Mr.', 'NNP'), ('Brown', 'NNP'), ('hierachical', 'JJ')], [('cozily', 'RB'), ('single', 'JJ'), ('practical', 'JJ'), ('badminton', 'NN'), ('Mr.', 'NNP'), ('Brown', 'NNP'), ('flat', 'JJ')]]
    
    >>> df['POS'] = tagged_texts
    >>> df
       ID                 Task        label  \
    0   1  Collect Information  no response   
    1   2           New Credit  no response   
    2   3  Collect Information     response   
    3   4  Collect Information     response   
    4   5  Collect Information     response   
    
                                                    Text  \
    0  cozily married practical athletics Mr. Brown flat   
    1     active married expensive soccer Mr. Chang flat   
    2  healthy single expensive badminton Mrs. Green ...   
    3  cozily married practical soccer Mr. Brown hier...   
    4   cozily single practical badminton Mr. Brown flat   
    
                                                     POS  
    0  [(cozily, RB), (married, JJ), (practical, JJ),...  
    1  [(active, JJ), (married, VBD), (expensive, JJ)...  
    2  [(healthy, JJ), (single, JJ), (expensive, JJ),...  
    3  [(cozily, RB), (married, JJ), (practical, JJ),...  
    4  [(cozily, RB), (single, JJ), (practical, JJ), ... 
    

    In Long:

    First, you can extract the Text column to a list of string:

    texts = df['Text'].tolist()
    

    Then you can apply the word_tokenize function:

    map(word_tokenize, texts)
    

    Note that, @Boud's suggested is almost the same, using df.apply:

    df['Text'].apply(word_tokenize)
    

    Then you dump the tokenized text into a list of list of string:

    df['Text'].apply(word_tokenize).tolist()
    

    Then you can use pos_tag_sents:

    pos_tag_sents( df['Text'].apply(word_tokenize).tolist() )
    

    Then you add the column back to the DataFrame:

    df['POS'] = pos_tag_sents( df['Text'].apply(word_tokenize).tolist() )