I came across a π algorithm called Chudnovsky algorithm. A Python implementation is showed on Wikipedia which use decimal
package comes with Python. But recently when I test Gauss Legendre algorithm I found mpmath
package runs much more efficient than decimal
when deals with high precision calculation, so I hope the algorithm could work with mpmath
. Here is my code:
#!/usr/bin/env python
from mpmath import *
import pi_compare # A module aim to compare result with standard pi
mp.dps = 1000
def pi():
K, M, L, X, S = 6, mpf('1'), 13591409, 1, mpf('13591409')
for i in xrange(0,100):
M = (K**3 - K*16) * M / K**3
L += 545140134
X *= -262537412640768000
S += (M * L) / X
K += 12
return mpf('426880') * mpf('10005').sqrt() / S
P = pi()
print P
print pi_compare.compare(str(P))
I do believe Python itself could deal with large integer so I do not use mpmath
on var K, L, X
as in iteration no decimal part will turn up. I think the matter occur on S += (M * L) / X
as X
is a quite large number.
It confused me a lot to deal with such a large number, hope for your advice, thanks.
As well as the typo mentioned by DSM, there's another problem with that code. The division by k**3
needs to be floor division, not float division. Here are repaired versions using both the decimal
and the mpmath
modules. This code works on both Python 2 & Python 3.
from decimal import Decimal as Dec, getcontext as gc
from mpmath import mp
def pi_dec(maxK=70, prec=1008):
gc().prec = prec
K, M, L, X, S = 6, 1, 13591409, 1, 13591409
for k in range(1, maxK+1):
M = (K**3 - (K<<4)) * M // k**3
L += 545140134
X *= -262537412640768000
S += Dec(M * L) / X
K += 12
pi = 426880 * Dec(10005).sqrt() / S
return pi
def pi_mp(maxK=70, prec=1008):
mp.dps = prec
K, M, L, X, S = 6, 1, 13591409, 1, 13591409
for k in range(1, maxK+1):
M = (K**3 - (K<<4)) * M // k**3
L += 545140134
X *= -262537412640768000
S += mp.mpf(M * L) / X
K += 12
pi = 426880 * mp.sqrt(10005) / S
return pi
Pi = pi_dec()
print(Pi)
Pi = pi_mp()
print(Pi)
output
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809533 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809523
For comparison purposes, here's the value of mp.pi
:
mp.dps = 1008
print(mp.pi)
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525