I implemented an algorithm where I make use of an priority queue. I was motivated by this question: Transform a std::multimap into std::priority_queue
I am going to store up to 10 million elements with their specific priority value.
I then want to iterate until the queue is empty. Every time an element is retrieved it is also deleted from the queue.
After this I recalculate the elements pririty value, because of previous iterations it can change.
If the value did increase I am inserting the element againg into the queue. This happens more often dependent on the progress. (at the first 25% it does not happen, in the next 50% it does happen, in the last 25% it will happen multiple times).
After receiving the next element and not reinserting it, I am going to process it. This for I do not need the priority value of this element but the technical ID of this element.
This was the reason I intuitively had chosen a std::multimap
to achieve this, using .begin()
to get the first element, .insert()
to insert it and .erase()
to remove it.
Also, I did not intuitively choose std::priority_queue
directly because of other questions to this topic answering that std::priority_queue
most likely is used for only single values and not for mapped values.
After reading the link above I reimplemented it using priority queue analogs to the other question from the link.
My runtimes seem to be not that unequal (about an hour on 10 mio elements).
Now I am wondering why std::priority_queue
is faster at all.
I actually would expect to be the std::multimap
faster because of the many reinsertions.
Maybe the problem is that there are too many reorganizations of the multimap?
To summarize: your runtime profile involves both removing and inserting elements from your abstract priority queue, with you trying to use both a std::priority_queue
and a std::multimap
as the actual implementation.
Both the insertion into a priority queue and into a multimap have roughly equivalent complexity: logarithmic.
However, there's a big difference with removing the next element from a multimap versus a priority queue. With a priority queue this is going to be a constant-complexity operation. The underlying container is a vector, and you're removing the last element from the vector, which is going to be mostly a nothing-burger.
But with a multimap you're removing the element from one of the extreme ends of the multimap.
The typical underlying implementation of a multimap is a balanced red/black tree. Repeated element removals from one of the extreme ends of a multimap has a good chance of skewing the tree, requiring frequent rebalancing of the entire tree. This is going to be an expensive operation.
This is likely to be the reason why you're seeing a noticeable performance difference.