Search code examples
rlistintersectioncombn

Intersecting many pairs of integer vectors


I have a list of integer vectors:

set.seed(1)
l <- list(g1=as.integer(runif(10,1,100)),
          g2=as.integer(runif(5,1,100)),
          g3=as.integer(runif(5,1,100)),
          g4=as.integer(runif(8,1,100)))

(in reality it's 1000's elements long and the mean length of the vector elements is in the 100s)

I want to compute the intersection over the union between all pairs of l's elements and their corresponding hypergeometric/fisher.test p-value.

Here's what I'm currently doing:

  1. First I generate a matrix to store l indices of all pairs of its elements:

    idx.mat <- t(combn(1:length(l),2))
    

This part is pretty fast and can be made faster using combnPrim

  1. Then I run this function to get my desired output:

    res.df <- do.call(rbind, lapply(1:nrow(idx.mat), function(i){ gi.length <- length(l[[idx.mat[i,1]]]) gj.length <- length(l[[idx.mat[i,2]]]) set.diff.1 <- length(setdiff(l[[idx.mat[i,1]]],l[[idx.mat[i,2]]])) set.diff.2 <- length(setdiff(l[[idx.mat[i,2]]],l[[idx.mat[i,1]]])) gi.gj.inter <- length(intersect(l[[idx.mat[i,1]]],l[[idx.mat[i,2]]])) gi.gj.union <- length(unique(c(l[[idx.mat[i,1]]],l[[idx.mat[i,2]]]))) p.value <- fisher.test(matrix(c(gi.length+gj.length- gi.gj.union,set.diff.1,set.diff.2,gi.gj.inter),nrow=2),alternative="greater")$p.value return(data.frame(gi=names(l)[idx.mat[i,1]], gj=names(l)[idx.mat[i,2]], gi.gj.inter=gi.gj.inter, gi.gj.union=gi.gj.union, gi.gj.iou=gi.gj.inter/gi.gj.union, gi.gj.iou.p.val=p.value, stringsAsFactors=F)) }))

But for my real data size this is a bit slow.

Any idea how to achieve this faster?


Solution

  • Try representing l as a 1/0 matrix:

    max.val = max(sapply(l, max))
    mat = do.call(rbind, lapply(l, function(x) {z = rep(0, max.val); z[x] = 1; z}))
    

    Now you can easily compute the pairwise intersections and unions up front:

    pair_intsct = mat %*% t(mat)
    
    pair_union = outer(rowSums(mat), rowSums(mat), '+') - pair_intsct