Search code examples
pythontensorflowdeep-learningkeras

Keras, How to get the output of each layer?


I have trained a binary classification model with CNN, and here is my code

model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
                        border_mode='valid',
                        input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (16, 16, 32)
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (8, 8, 64) = (2048)
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))  # define a binary classification problem
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])
model.fit(x_train, y_train,
          batch_size=batch_size,
          nb_epoch=nb_epoch,
          verbose=1,
          validation_data=(x_test, y_test))

And here, I wanna get the output of each layer just like TensorFlow, how can I do that?


Solution

  • You can easily get the outputs of any layer by using: model.layers[index].output

    For all layers use this:

    from keras import backend as K
    
    inp = model.input                                           # input placeholder
    outputs = [layer.output for layer in model.layers]          # all layer outputs
    functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs]    # evaluation functions
    
    # Testing
    test = np.random.random(input_shape)[np.newaxis,...]
    layer_outs = [func([test, 1.]) for func in functors]
    print layer_outs
    

    Note: To simulate Dropout use learning_phase as 1. in layer_outs otherwise use 0.

    Edit: (based on comments)

    K.function creates theano/tensorflow tensor functions which is later used to get the output from the symbolic graph given the input.

    Now K.learning_phase() is required as an input as many Keras layers like Dropout/Batchnomalization depend on it to change behavior during training and test time.

    So if you remove the dropout layer in your code you can simply use:

    from keras import backend as K
    
    inp = model.input                                           # input placeholder
    outputs = [layer.output for layer in model.layers]          # all layer outputs
    functors = [K.function([inp], [out]) for out in outputs]    # evaluation functions
    
    # Testing
    test = np.random.random(input_shape)[np.newaxis,...]
    layer_outs = [func([test]) for func in functors]
    print layer_outs
    

    Edit 2: More optimized

    I just realized that the previous answer is not that optimized as for each function evaluation the data will be transferred CPU->GPU memory and also the tensor calculations needs to be done for the lower layers over-n-over.

    Instead this is a much better way as you don't need multiple functions but a single function giving you the list of all outputs:

    from keras import backend as K
    
    inp = model.input                                           # input placeholder
    outputs = [layer.output for layer in model.layers]          # all layer outputs
    functor = K.function([inp, K.learning_phase()], outputs )   # evaluation function
    
    # Testing
    test = np.random.random(input_shape)[np.newaxis,...]
    layer_outs = functor([test, 1.])
    print layer_outs