Search code examples
pythontheanolasagne

Theano MiniBatch Iterator not working


Theano MiniBatch Iterator not working

I coded a minibatch iterator to get predicted results from my neural network. However, i made some tests and noticed a few errors.

Basically :

If batch_size > amount of inputs  : error

I made a script to show this bug in my code. Its shown below:

import numpy as np

def minibatch_iterator_predictor(inputs, batch_size):
    assert len(inputs) > 0

    for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
        excerpt = slice(start_idx, start_idx + batch_size)
        yield inputs[excerpt]


def test(x, batch_size):
    prediction = np.empty((x.shape[0], 2), dtype=np.float32)

    index = 0
    for batch in minibatch_iterator_predictor(inputs=x, batch_size=batch_size):
        inputs = batch

        # y = self.predict_function(inputs)
        y = inputs

        prediction[index * batch_size:batch_size * (index + 1), :] = y[:]
        index += 1
    return prediction

######################################
#TEST SCRIPT
######################################

#Input
arr = np.zeros(shape=(10, 2))

arr[0] = [1, 0]
arr[1] = [2, 0]
arr[2] = [3, 0]
arr[3] = [4, 0]
arr[4] = [5, 0]
arr[5] = [6, 0]
arr[6] = [7, 0]
arr[7] = [8, 0]
arr[8] = [9, 0]
arr[9] = [10, 0]

###############################################

batch_size = 5
print "\nBatch_size ", batch_size
r = test(x=arr, batch_size=batch_size)

#Debug
for k in xrange(r.shape[0]):
        print str(k) + " : " + str(r[k])

##Assert

assert arr.shape[0] == r.shape[0]

for k in xrange(0,r.shape[0]):
    print r[k] == arr[k]

Here are the Tests

For batch_size = 10 :

Batch_size  10
0 : [ 1.  0.]
1 : [ 2.  0.]
2 : [ 3.  0.]
3 : [ 4.  0.]
4 : [ 5.  0.]
5 : [ 6.  0.]
6 : [ 7.  0.]
7 : [ 8.  0.]
8 : [ 9.  0.]
9 : [ 10.   0.]

For batch_size = 11 :

0 : [  1.13876845e-37   0.00000000e+00]
1 : [  1.14048027e-37   0.00000000e+00]
2 : [  1.14048745e-37   0.00000000e+00]
3 : [  9.65151604e-38   0.00000000e+00]
4 : [  1.14002468e-37   0.00000000e+00]
5 : [  1.14340036e-37   0.00000000e+00]
6 : [  1.14343264e-37   0.00000000e+00]
7 : [  8.02794698e-38   0.00000000e+00]
8 : [  8.02794698e-38   0.00000000e+00]
9 : [  8.02794698e-38   0.00000000e+00]

For Batch_size 12

0 : [  1.13876845e-37   0.00000000e+00]
1 : [  1.14048027e-37   0.00000000e+00]
2 : [  1.14048745e-37   0.00000000e+00]
3 : [  9.65151604e-38   0.00000000e+00]
4 : [  1.14002468e-37   0.00000000e+00]
5 : [  1.14340036e-37   0.00000000e+00]
6 : [  1.14343264e-37   0.00000000e+00]
7 : [  8.10141537e-38   0.00000000e+00]
8 : [  8.10141537e-38   0.00000000e+00]
9 : [  8.10141537e-38   0.00000000e+00]

How can i fix this?


Solution

  • Please try to be more specific in the question. What exactly do you want to fix?

    There isn't any error. When the batch size is bigger than the inputs the function minibatch_iterator_predictor yields an empty iterator and the loop for batch in minibatch_iterator_predictor(inputs=x, batch_size=batch_size) is not executed.

    What you get when the batch_size is bigger than the number of inputs is just the zeroes from the initialization: prediction = np.empty((x.shape[0], 2), dtype=np.float32)

    What you can do is to limit the max batch_size to the number of inputs:

    def minibatch_iterator_predictor(inputs, batch_size):
        assert len(inputs) > 0
        if batch_size > len(inputs):
            batch_size = len(inputs)
    
        for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
            excerpt = slice(start_idx, start_idx + batch_size)
            yield inputs[excerpt]