Search code examples
c++data-structurespriority-queue

Randomly Access in a Priority Queue


How i can access/search randomly in a priority queue?. for example, if have a priority queue like q={5,4,3,2,1} for example, i want to access 3rd value directly which is 3, i could not do this,is there any process to access randomly in priority queue?


Solution

  • Most priority queue implementations, including the C++ std::priority_queue type, don't support random access. The idea behind a priority queue is to sacrifice random access for fast access to the smallest element.

    Depending on what you're trying to do, there are a number of other approaches you could use. If you always want access to the third element in the queue (and not any other arbitrary positions), it's probably fast enough to just dequeue two elements, cache them, then dequeue the value you want and put the other two elements back.

    If you want access to the kth-smallest element at any point in time, where k is larger, one option is to store two different priority queues: a reverse-sorted priority queue that holds k elements (call it the left queue) and a regular priority queue holding the remaining n-k elements (call it the right queue). To get the kth-smallest element, dequeue from the left queue (giving back the kth-smallest element), then dequeue an element from the right and enqueue into the left to get it back up to k total elements. To do an enqueue, check if the number is less than the top of the left queue. If so, dequeue from the left queue, enqueue the removed element into the right queue, then enqueue the original element into the left. Otherwise, enqueue into the right. This guarantees O(log n) runtimes for each operation.

    If you need true random access to a sorted sequence, consider using an order statistics tree. This is an augmented binary search tree that supports O(log n) access to elements by index. You can use this to build a priority queue - the minimum element is always at index 0. The catch (of course there's a catch) is that it's hard to find a good implementation of one and the constant factors hidden in the O(log n) terms are much higher than in a standard binary heap.