I have imported a DataFrame
as below:
julia> df
100×3 DataFrames.DataFrame
│ Row │ ex1 │ ex2 │ admit │
├─────┼─────────┼─────────┼───────┤
│ 1 │ 34.6237 │ 78.0247 │ 0 │
│ 2 │ 30.2867 │ 43.895 │ 0 │
│ 3 │ 35.8474 │ 72.9022 │ 0 │
│ 4 │ 60.1826 │ 86.3086 │ 1 │
│ 5 │ 79.0327 │ 75.3444 │ 1 │
│ 6 │ 45.0833 │ 56.3164 │ 0 │
│ 7 │ 61.1067 │ 96.5114 │ 1 │
│ 8 │ 75.0247 │ 46.554 │ 1 │
⋮
│ 92 │ 90.4486 │ 87.5088 │ 1 │
│ 93 │ 55.4822 │ 35.5707 │ 0 │
│ 94 │ 74.4927 │ 84.8451 │ 1 │
│ 95 │ 89.8458 │ 45.3583 │ 1 │
│ 96 │ 83.4892 │ 48.3803 │ 1 │
│ 97 │ 42.2617 │ 87.1039 │ 1 │
│ 98 │ 99.315 │ 68.7754 │ 1 │
│ 99 │ 55.34 │ 64.9319 │ 1 │
│ 100 │ 74.7759 │ 89.5298 │ 1 │
I want to plot this DataFrame
using ex1
as x-axis, ex2
as y-axis. In addition, the data is categorized by the third column :admit
, so I want to give dots different colors based on the :admit
value.
I used Scale.color_discrete_manual
to set up colors, and I tried to use Guide.manual_color_key
to change the color key legend. However it turns out Gadfly made two color keys.
p = plot(df, x = :ex1, y = :ex2, color=:admit,
Scale.color_discrete_manual(colorant"deep sky blue",
colorant"light pink"),
Guide.manual_color_key("Legend", ["Failure", "Success"],
["deep sky blue", "light pink"]))
My question is how to change the color key legend when using Scale.color_discrete_manual
?
One related question is Remove automatically generated color key in Gadfly plot, where the best answer suggests to use two layers plus Guide.manual_color_key
. Is there a better solution for using DataFrame
and Scale.color_discrete_manual
?
Currently, it looks like users cannot customize the color legend generated by color
or Scale.color_discrete_manual
based on the discussion.
From the same source, Mattriks suggested to use an extra column as "label". Although it is not "natural" for changing color key, it works pretty well.
Therefore, for the same dataset in the problem. We add one more column:
df[:admission] = map(df[:admit])do x
if x == 1
return "Success"
else
return "Failure"
end
end
julia> df
100×4 DataFrames.DataFrame
│ Row │ exam1 │ exam2 │ admit │ admission │
├─────┼─────────┼─────────┼───────┼───────────┤
│ 1 │ 34.6237 │ 78.0247 │ 0 │ "Failure" │
│ 2 │ 30.2867 │ 43.895 │ 0 │ "Failure" │
│ 3 │ 35.8474 │ 72.9022 │ 0 │ "Failure" │
│ 4 │ 60.1826 │ 86.3086 │ 1 │ "Success" │
│ 5 │ 79.0327 │ 75.3444 │ 1 │ "Success" │
│ 6 │ 45.0833 │ 56.3164 │ 0 │ "Failure" │
│ 7 │ 61.1067 │ 96.5114 │ 1 │ "Success" │
│ 8 │ 75.0247 │ 46.554 │ 1 │ "Success" │
⋮
│ 92 │ 90.4486 │ 87.5088 │ 1 │ "Success" │
│ 93 │ 55.4822 │ 35.5707 │ 0 │ "Failure" │
│ 94 │ 74.4927 │ 84.8451 │ 1 │ "Success" │
│ 95 │ 89.8458 │ 45.3583 │ 1 │ "Success" │
│ 96 │ 83.4892 │ 48.3803 │ 1 │ "Success" │
│ 97 │ 42.2617 │ 87.1039 │ 1 │ "Success" │
│ 98 │ 99.315 │ 68.7754 │ 1 │ "Success" │
│ 99 │ 55.34 │ 64.9319 │ 1 │ "Success" │
│ 100 │ 74.7759 │ 89.5298 │ 1 │ "Success" │
Then color the data using this new column Scale.color_discrete_manual
:
plot(df, x = :exam1, y = :exam2, color = :admission,
Scale.color_discrete_manual(colorant"deep sky blue",
colorant"light pink"))