I have a simple loop with takes the product of n complex numbers. As I perform this loop millions of times I want it to be as fast as possible. I understand that it's possible to do this quickly using SSE3 and gcc intrinsics like _mm_addsub_ps
but I'm interested in whether it's possible to get gcc to auto-vectorize code like this, a product of complex numbers:
#include <complex.h>
complex float f(complex float x[], int n ) {
complex float p = 1.0;
for (int i = 0; i < n; i++)
p *= x[i];
return p;
}
The assembly you get from gcc -S -O3 -ffast-math
is:
.file "test.c"
.section .text.unlikely,"ax",@progbits
.LCOLDB2:
.text
.LHOTB2:
.p2align 4,,15
.globl f
.type f, @function
f:
.LFB0:
.cfi_startproc
testl %esi, %esi
jle .L4
leal -1(%rsi), %eax
pxor %xmm2, %xmm2
movss .LC1(%rip), %xmm3
leaq 8(%rdi,%rax,8), %rax
.p2align 4,,10
.p2align 3
.L3:
movaps %xmm3, %xmm5
movaps %xmm3, %xmm4
movss (%rdi), %xmm0
addq $8, %rdi
movss -4(%rdi), %xmm1
mulss %xmm0, %xmm5
mulss %xmm1, %xmm4
cmpq %rdi, %rax
mulss %xmm2, %xmm0
mulss %xmm2, %xmm1
movaps %xmm5, %xmm3
movaps %xmm4, %xmm2
subss %xmm1, %xmm3
addss %xmm0, %xmm2
jne .L3
movaps %xmm2, %xmm1
.L2:
movss %xmm3, -8(%rsp)
movss %xmm1, -4(%rsp)
movq -8(%rsp), %xmm0
ret
.L4:
movss .LC1(%rip), %xmm3
pxor %xmm1, %xmm1
jmp .L2
.cfi_endproc
.LFE0:
.size f, .-f
.section .text.unlikely
.LCOLDE2:
.text
.LHOTE2:
.section .rodata.cst4,"aM",@progbits,4
.align 4
.LC1:
.long 1065353216
.ident "GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609"
.section .note.GNU-stack,"",@progbits
The problem is that the complex
type is not SIMD friendly. I have never been a fan of the complex
type because it's a composite object that usually does not map to a primitive type or single operation in hardware (certainly not with x86 hardware).
In order to make complex arithmetic SIMD friendly you need to operate on multiple complex numbers simultaneous. For SSE you need to operate on four complex numbers at once.
We can use GCC's vector extensions to make the syntax easier.
typedef float v4sf __attribute__ ((vector_size (16)));
Then we can delcare a union of an array and the vector extension
typedef union {
v4sf v;
float e[4];
} float4
And lastly we define a block of four complex numbers like this
typedef struct {
float4 x;
float4 y;
} complex4;
where x
is four real parts and y
is four imaginary components.
Once we have this we can multiple 4 complex numbers at once like this
static complex4 complex4_mul(complex4 a, complex4 b) {
return (complex4){a.x.v*b.x.v -a.y.v*b.y.v, a.y.v*b.x.v + a.x.v*b.y.v};
}
and finally we get to your function modified to operate on four complex numbers at a time.
complex4 f4(complex4 x[], int n) {
v4sf one = {1,1,1,1};
complex4 p = {one,one};
for (int i = 0; i < n; i++) p = complex4_mul(p, x[i]);
return p;
}
Let's look at the assembly (Intel syntax) to see if it's optimal
.L3:
movaps xmm4, XMMWORD PTR [rsi]
add rsi, 32
movaps xmm1, XMMWORD PTR -16[rsi]
cmp rdx, rsi
movaps xmm2, xmm4
movaps xmm5, xmm1
mulps xmm1, xmm3
mulps xmm2, xmm3
mulps xmm5, xmm0
mulps xmm0, xmm4
subps xmm2, xmm5
addps xmm0, xmm1
movaps xmm3, xmm2
jne .L3
That's exactly four 4-wide multiplications, one 4-wide addition, and one 4-wide subtraction. The variable p
stays in register and only the array x
is loaded from memory just like we want.
Let's look at the algebra for the product of complex numbers
{a, bi}*{c, di} = {(ac - bd),(bc + ad)i}
That's exactly four multiplications, one addition, and one subtraction.
As I explained in this answer efficient SIMD algebraically is often identical to the scalar arithmetic. So we have replaced four 1-wide multiplications, addition, and subtraction, with four 4-wide multiplications, addition, and subtraction. That's the best you can do with 4-wide SIMD: four for the price of one.
Note that this does not need any instructions beyond SSE and no additional SSE instructions (except for FMA4) will be any better. So on a 64-bit system you can compile with -O3
.
It is trivial to extend this for 8-wide SIMD with AVX.
One major advantage of using GCC's vector extensions is you get FMA without any additional effort. E.g. if you compile with -O3 -mfma4
the main loop is
.L3:
vmovaps xmm0, XMMWORD PTR 16[rsi]
add rsi, 32
vmulps xmm1, xmm0, xmm2
vmulps xmm0, xmm0, xmm3
vfmsubps xmm1, xmm3, XMMWORD PTR -32[rsi], xmm1
vmovaps xmm3, xmm1
vfmaddps xmm2, xmm2, XMMWORD PTR -32[rsi], xmm0
cmp rdx, rsi
jne .L3