I have a DataFrame df1
:
import pandas as pd
import numpy as np
import statsmodels.formula.api as sm
df1 = pd.DataFrame( np.random.randn(3000,1), index= pd.date_range('1/1/1990', periods=3000), columns = {"M"})
I would like to group elements in a box size = 10, fit them using OLS and compute Y_t
, where Y_t
stands for the series of straight line fits.
In other words, I would like to take the first 10 values, fit them using OLS ( Y_t = b*X_t+a_0) and obtain the values Y_t
for these 10 values. Again do the same for the next 10 values (not a rolling window!), and so on and so forth.
My approach
The first issue that I faced was that I could not fit elements using DateTime
values as predictors, so I defined a new DataFrame df_fit
that contains two columns A
and B
. Column A
contains integers from 0 to 9, and column B
the values of df1
in groups of 10 elements:
def compute_yt(df,i,bs):
df_fit = pd.DataFrame({"B": np.arange(1,bs+1),\
"A": df.reset_index().loc[i*bs:((i+1)*bs-1), "M"]})
fit = sm.ols(formula = "A ~ B", data = df_fit).fit()
yt = fit.params.B*df_fit["B"] + fit.params.Intercept
return yt
Where bs
is the box size (10 in this example), i
is an index that allows to sweep over all values.
Finally,
result = [compute_yt(df1,n,l) for n in np.arange(0,round(len(df1)/l)-1)]
result =
Name: B, dtype: float64, 840 -0.249590
841 -0.249935
842 -0.250280
843 -0.250625
844 -0.250970
845 -0.251315
846 -0.251660
847 -0.252005
848 -0.252350
849 -0.252695
Name: B, dtype: float64, 850 -0.252631
851 -0.252408
... ...
Where result
is a list that should contain the values for the straight line fits.
So, my questions are the following:
Is there a way to run an OLS using DateTime values as predictors?
I would like to use the list comprehension to build a DataFrame (with the same shape as df1
) containing the values of y_t
. This relates to question (1) in the sense that I would like to obtain a time-series for these values.
Is there a more "pythonic" way to write this code? The way I have sliced the dataframe does not seem too much suitable.
Not really sure if this is what you wanted to do but I first added a group number and an observation number to each row of your dataframe and then pivoted it so that every row had 10 observations.
df1 = pd.DataFrame( data={'M':np.random.randn(3000)}, index= pd.date_range('1/1/1990', periods=3000))
df1['group_num'] = np.repeat(range(300), 10)
df1['obs_num'] = np.tile(range(10), 300)
df_pivot = df1.pivot(index='group_num', columns='obs_num')
print(df_pivot.head())
Output
M \
obs_num 0 1 2 3 4 5
group_num
0 -0.063775 -1.293410 0.395011 -1.224491 1.777335 -2.395643
1 -1.111679 1.668670 1.864227 -1.555251 0.959276 0.615344
2 -0.213891 -0.733493 0.175590 0.561410 1.359565 -1.341193
3 0.534735 -2.154626 -1.226191 -0.309502 1.368085 0.769155
4 -0.611289 -0.545276 -1.924381 0.383596 0.322731 0.989450
obs_num 6 7 8 9
group_num
0 -1.461194 -0.481617 -1.101098 1.102030
1 -0.120995 -1.046757 1.286074 -0.832990
2 0.322485 -0.825315 -2.277746 -0.619008
3 0.794694 0.912190 -1.006603 0.572619
4 -1.191902 1.229913 1.105221 0.899331
I then wrote a function to do ordinary least squares with statsmodels - not the formula type.
import statsmodels.api as sm
def compute_yt(row):
X = sm.add_constant(np.arange(10))
fit = sm.OLS(row.values, X).fit()
yt = fit.params[1] * row.values + fit.params[0]
return yt
I then called this function over all the rows via apply
.
df_pivot.apply(compute_yt, axis=1)
With output a predicted value for each original set of 10 values.
M \
obs_num 0 1 2 3 4 5
group_num
0 -0.063775 -1.293410 0.395011 -1.224491 1.777335 -2.395643
1 -1.111679 1.668670 1.864227 -1.555251 0.959276 0.615344
2 -0.213891 -0.733493 0.175590 0.561410 1.359565 -1.341193
3 0.534735 -2.154626 -1.226191 -0.309502 1.368085 0.769155
4 -0.611289 -0.545276 -1.924381 0.383596 0.322731 0.989450
obs_num 6 7 8 9
group_num
0 -1.461194 -0.481617 -1.101098 1.102030
1 -0.120995 -1.046757 1.286074 -0.832990
2 0.322485 -0.825315 -2.277746 -0.619008
3 0.794694 0.912190 -1.006603 0.572619
4 -1.191902 1.229913 1.105221 0.899331