I am trying to simplify a differential equation via substitution in maxima
. However, the substitution does not seem to be working.
Here's my code:
depends (\rho,[t, r, \theta, z]); depends (V, [t, r, \theta, z]);
f_contin : diff (\rho, t) + diff (\rho*r*V[r], r)*(1/r) = 0;
base : diff (V[b]*r*\rho, r) = 0;
V_sub : V[r] = V[b] + \epsilon*V[r];
subst (V_sub, f_contin);
subst (base, %o6);
The last substitution did not work. What am I doing wrong here?
The problem is that subst(a=b, c)
(or equivalently subst(b, a, c)
) can only make substitutions when a
is an exact subexpression of c
.
ratsubst
(which see) can handle some cases when a
is not an exact subexepression but in this case it doesn't seem to work.
But I think you can get the result you want by just subtracting the one equation from the other. Note that (a=b) - (c=d)
yields a - c = b - d
. Note also that I've put in another step (in %i7) to apply the diff
operator. Also I've multiplied %o7 by r to get something like base
.
(%i1) depends (\rho,[t, r, \theta, z]); depends (V, [t, r, \theta, z]);
(%o1) [rho(t, r, theta, z)]
(%o2) [V(t, r, theta, z)]
(%i3) f_contin : diff (\rho, t) + diff (\rho*r*V[r], r)*(1/r) = 0;
drho d
r V ---- + r (-- (V )) rho + V rho
drho r dr dr r r
(%o3) ---- + ------------------------------------ = 0
dt r
(%i4) base : diff (V[b]*r*\rho, r) = 0;
drho d
(%o4) V r ---- + (-- (V )) r rho + V rho = 0
b dr dr b b
(%i5) V_sub : V[r] = V[b] + \epsilon*V[r];
(%o5) V = epsilon V + V
r r b
(%i6) subst (V_sub, f_contin);
drho drho d
(%o6) ---- + (r (epsilon V + V ) ---- + r (-- (epsilon V + V )) rho
dt r b dr dr r b
+ (epsilon V + V ) rho)/r = 0
r b
(%i7) %o6, nouns;
drho drho d d
(%o7) ---- + (r (epsilon V + V ) ---- + r (epsilon (-- (V )) + -- (V )) rho
dt r b dr dr r dr b
+ (epsilon V + V ) rho)/r = 0
r b
(%i8) expand (r*%o7 - base);
drho drho d
(%o8) r ---- + epsilon r V ---- + epsilon r (-- (V )) rho + epsilon V rho = 0
dt r dr dr r r