I have a pandas dataframe including the following columns:
label = ('A' , 'D' , 'K', 'L', 'P')
x = (1 , 4 , 9, 6, 4)
y = (2 , 6 , 5, 8, 9)
plot_id = (1 , 1 , 2, 2, 3)
I want to creat 3 seperate scatter plots - one for each individual plot_id
. So the first scatter plot should consists all entries where plot_id == 1
and hence the points (1,2) and (4,6). Each data point should be labelled by label
. Hence the first plot should have the labels A
and B
.
I understand I can use annotate
to label, and I am familiar with for
loops. But I have no idea how to combine the two.
I wish I could post better code snippet of what I have done so far - but it's just terrible. Here it is:
for i in range(len(df.plot_id)):
plt.scatter(df.x[i],df.y[i])
plt.show()
That's all I got - unfortunately. Any ideas on how to procede?
updated answer
save separate image files
def annotate(row, ax):
ax.annotate(row.label, (row.x, row.y),
xytext=(10, -5), textcoords='offset points')
for pid, grp in df.groupby('plot_id'):
ax = grp.plot.scatter('x', 'y')
grp.apply(annotate, ax=ax, axis=1)
plt.savefig('{}.png'.format(pid))
plt.close()
old answer
for those who want something like this
def annotate(row, ax):
ax.annotate(row.label, (row.x, row.y),
xytext=(10, -5), textcoords='offset points')
fig, axes = plt.subplots(df.plot_id.nunique(), 1)
for i, (pid, grp) in enumerate(df.groupby('plot_id')):
ax = axes[i]
grp.plot.scatter('x', 'y', ax=ax)
grp.apply(annotate, ax=ax, axis=1)
fig.tight_layout()
setup
label = ('A' , 'D' , 'K', 'L', 'P')
x = (1 , 4 , 9, 6, 4)
y = (2 , 6 , 5, 8, 9)
plot_id = (1 , 1 , 2, 2, 3)
df = pd.DataFrame(dict(label=label, x=x, y=y, plot_id=plot_id))