I want to fit a piecewise linear regression with one break point xt
, such that for x < xt
we have a quadratic polynomial and for x >= xt
we have a straight line. Two pieces should join smoothly, with continuity up to 1st derivative at xt
. Here's picture of what it may look like:
I have parametrize my piecewise regression function as:
where a
, b
, c
and xt
are parameters to be estimated.
I want to compare this model with a quadratic polynomial regression over the whole range in terms of adjusted R-squared.
Here is my data:
y <- c(1, 0.59, 0.15, 0.078, 0.02, 0.0047, 0.0019, 1, 0.56, 0.13,
0.025, 0.0051, 0.0016, 0.00091, 1, 0.61, 0.12, 0.026, 0.0067,
0.00085, 4e-04)
x <- c(0, 5.53, 12.92, 16.61, 20.3, 23.07, 24.92, 0, 5.53, 12.92,
16.61, 20.3, 23.07, 24.92, 0, 5.53, 12.92, 16.61, 20.3, 23.07,
24.92)
My attempt goes as follows, for a known xt
:
z <- pmax(0, x - xt)
x1 <- pmin(x, xt)
fit <- lm(y ~ x1 + I(x1 ^ 2) + z - 1)
But the straight line does not appear to be tangent to the quadratic polynomial at xt
. Where am I doing wrong?
Similar questions:
In this section I will be demonstrating a reproducible example. Please make sure you have sourced functions defined in the other answer.
## we first generate a true model
set.seed(0)
x <- runif(100) ## sample points on [0, 1]
beta <- c(0.1, -0.2, 2) ## true coefficients
X <- getX(x, 0.6) ## model matrix with true break point at 0.6
y <- X %*% beta + rnorm(100, 0, 0.08) ## observations with Gaussian noise
plot(x, y)
Now, assume we don't know c
, and we would like to search on a evenly spaced grid:
c.grid <- seq(0.1, 0.9, 0.05)
fit <- choose.c(x, y, c.grid)
fit$c
RSS
has chosen 0.55. This is slightly different from the true value 0.6
, but from the plot we see that RSS
curve does not vary much between [0.5, 0.6]
so I am happy with this.
The resulting model fit
contains rich information:
#List of 12
# $ coefficients : num [1:3] 0.114 -0.246 2.366
# $ residuals : num [1:100] 0.03279 -0.01515 0.21188 -0.06542 0.00763 ...
# $ fitted.values: num [1:100] 0.0292 0.3757 0.2329 0.1087 0.0263 ...
# $ R : num [1:3, 1:3] -10 0.1 0.1 0.292 2.688 ...
# $ sig2 : num 0.00507
# $ coef.table : num [1:3, 1:4] 0.1143 -0.2456 2.3661 0.0096 0.0454 ...
# ..- attr(*, "dimnames")=List of 2
# .. ..$ : chr [1:3] "beta0" "beta1" "beta2"
# .. ..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"
# $ aic : num -240
# $ bic : num -243
# $ c : num 0.55
# $ RSS : num 0.492
# $ r.squared : num 0.913
# $ adj.r.squared: num 0.911
We can extract the summary table for coefficients:
fit$coef.table
# Estimate Std. Error t value Pr(>|t|)
#beta0 0.1143132 0.009602697 11.904286 1.120059e-20
#beta1 -0.2455986 0.045409356 -5.408546 4.568506e-07
#beta2 2.3661097 0.169308226 13.975161 5.730682e-25
Finally, we want to see some prediction plot.
x.new <- seq(0, 1, 0.05)
p <- pred(fit, x.new)
head(p)
# fit se.fit lwr upr
#[1,] 0.9651406 0.02903484 0.9075145 1.0227668
#[2,] 0.8286400 0.02263111 0.7837235 0.8735564
#[3,] 0.7039698 0.01739193 0.6694516 0.7384880
#[4,] 0.5911302 0.01350837 0.5643199 0.6179406
#[5,] 0.4901212 0.01117924 0.4679335 0.5123089
#[6,] 0.4009427 0.01034868 0.3804034 0.4214819
We can make a plot:
plot(x, y, cex = 0.5)
matlines(x.new, p[,-2], col = c(1,2,2), lty = c(1,2,2), lwd = 2)