Search code examples
pythonfunctionpandashaversine

How to call data from a dataframe into Haversine function


I have a dataframe called lat_long which contains the latitude and longitude of some locations. I want to find the difference between each following location. When I use the example haversine function, i get an error. KeyError: ('1', u'occurred at index 0').

    1         2
0  -6.081689  145.391881
1  -5.207083  145.788700
2  -5.826789  144.295861
3  -6.569828  146.726242
4  -9.443383  147.220050

def haversine(row):
    lon1 = lat_long['1']
    lat1 = lat_long['2']
    lon2 = row['1']
    lat2 = row['2']
    lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * arcsin(sqrt(a)) 
    km = 6367 * c
    return km

lat_long['distance'] = lat_long.apply(lambda row: haversine(row), axis=1)
lat_long

Solution

  • Try this solution:

    def haversine_np(lon1, lat1, lon2, lat2):
        """
        Calculate the great circle distance between two points
        on the earth (specified in decimal degrees)
    
        All args must be of equal length.    
    
        """
        lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
    
        dlon = lon2 - lon1
        dlat = lat2 - lat1
    
        a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
    
        c = 2 * np.arcsin(np.sqrt(a))
        km = 6367 * c
        return km
    

    Demo:

    In [17]: df
    Out[17]:
            lat         lon
    0 -6.081689  145.391881
    1 -5.207083  145.788700
    2 -5.826789  144.295861
    3 -6.569828  146.726242
    4 -9.443383  147.220050
    
    In [18]: df['dist'] = \
        ...:     haversine_np(df.lon.shift(), df.lat.shift(), df.ix[1:, 'lon'], df.ix[1:, 'lat'])
    
    In [19]: df
    Out[19]:
            lat         lon        dist
    0 -6.081689  145.391881         NaN
    1 -5.207083  145.788700  106.638117
    2 -5.826789  144.295861  178.907364
    3 -6.569828  146.726242  280.904983
    4 -9.443383  147.220050  323.913612