Search code examples
pythonpandasdataframegroup-bycumsum

How to groupby consecutive values in pandas DataFrame


I have a column in a DataFrame with values:

[1, 1, -1, 1, -1, -1]

How can I group them like this?

[1,1] [-1] [1] [-1, -1]

Solution

  • You can use groupby by custom Series:

    df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1]})
    print(df)
       a
    0  1
    1  1
    2 -1
    3  1
    4 -1
    5 -1
    
    print(df['a'].ne(df['a'].shift()).cumsum())
    0    1
    1    1
    2    2
    3    3
    4    4
    5    4
    Name: a, dtype: int32
    
    for i, g in df.groupby(df['a'].ne(df['a'].shift()).cumsum()):
        print(i)
        print(g)
        print(g.a.tolist())
    
    1
       a
    0  1
    1  1
    [1, 1]
    2
       a
    2 -1
    [-1]
    3
       a
    3  1
    [1]
    4
       a
    4 -1
    5 -1
    [-1, -1]