Assuming P != NP
The euler diagram shows a part not part of P and NP-complete. I read on wikipedia that this set is called NP-Intermediate.
I have some doubts as to how are NPI problems defined?
An NP-intermediate problem is a decision problem that
That last criterion can be stated in a number of different ways. One way to say this is that there is no polynomial-time mapping reduction from SAT to that particular problem.
These problems are primarily of theoretical interest right now because we don't know if any NP-intermediate problems exist - if we could find one, we'd have a problem in NP that's not in P, meaning that P ≠ NP! However, they're interesting because if we can prove that P ≠ NP, then we know that there are some problems in NP that are too hard to be solved in polynomial time, but which aren't among the "hardest" of the hard problems in NP (the problems that are NP-complete).
In the event that P = NP, then there would not be any NP-intermediate problems because you couldn't have a problem in NP but not in P. If P ≠ NP, then Ladner's theorem guarantees at least one NP-intermediate problem exists, but does so by specifically constructing a problem that is highly artificial and designed solely to be NP-intermediate in that case. Right now, with a few exceptions (notably the graph isomorphism problem), all the problems we know of in NP are either squarely in P or known to be NP-complete.