I applied following function to normalize the columns in my dataframe.
from sklearn.preprocessing import normalize
pd.DataFrame(normalize(traffic, norm='l2', axis=1, copy=True, return_norm=False))
However, this function returns an array
array([[ 0.19781966, 0.21981735, 0. , ..., 0.05655909,
0. , 0.00033033],
[ 0.18050277, 0.2031944 , 0. , ..., 0.15848418,
0. , 0.00032616],
[ 0.14110768, 0.16995336, 0. , ..., 0.0820779 ,
0. , 0.00023619],
Is there any way to write the normalized data into the original "traffic" dataframe and replace the raw values?
I realized that when I apply
pd.DataFrame(normalize(traffic, norm='l2', axis=1, copy=True, return_norm=False))
all original column names and the index are gone.
If normalize
function returns an array of the same shape as the traffic
DF you can do it this way:
pd.DataFrame(normalize(traffic, norm='l2', axis=1, copy=True, return_norm=False),
columns=traffic.columns, index=traffic.index)