Search code examples
arduinoesp8266ifttt

Why does PIR sensor stay high with nodeMCU/ESP8266 board?


I have a PIR sensor attached to a Amica nodeMCU board routing 5v from VIN and attached via USB port for testing. When motion is deteted it connects to the internet and sends data to IFTTT which i receive a notification on my phone.

When I power up, the PIR pauses for calibration and then immediately goes HIGH and fires the motion detected call which i receive on my phone. However From then on it never goes LOW but every 5-8 minutes sends another HIGH call through even if there is no motion.

Testing

  • Tried using separate 5v supply to PIR same thing happens
  • I have tried both retrigger modes (H & L) and experienced the same result
  • The same happens with the Adafruit featherwing huzzah board.
  • I have tested the PIR without a micro-controller and can confirm that it functions correctly -lighting an led
  • I have tested with an Arduino Nano with the same code and it functions correctly - lighting an led

My Code modified version of Arduino Playground PIR Project

//Sends IFTTT every 5 minutes it detects motion

#include <ESP8266WiFi.h>
//WiFi Settings

// Set up macros for wifi and connection.
#define SSID "my-network"    // SSID
#define PASS "mypassphrase"      // Network Password
#define HOST "maker.ifttt.com"  // Webhost
//-------------------------------
const char* streamId   = "test";
const char* privateKey = "mysecretkey";

//PIR Settings
//the time we give the sensor to calibrate (10-60 secs according to the datasheet)
int calibrationTime = 10;        

//the time when the sensor outputs a low impulse
long unsigned int lowIn;         

//the amount of milliseconds the sensor has to be low 
//before we assume all motion has stopped
long unsigned int pause = 5000;  


int  interval = 1000; // Wait between dumps
boolean lockLow = true;
boolean takeLowTime;  
int ledPin = 1;
int pirPin = 2;    //the digital pin connected to the PIR sensor's output
int nPIR_detect;
int motion = 2;

int minSecsBetweenUpdates = 300; // 5 minutes
long lastSend = -minSecsBetweenUpdates * 1000l;
//-------------------------------

// Begin Setup
void setup(){
  Serial.begin(115200);
  pinMode(pirPin, INPUT);
  digitalWrite(pirPin, LOW);

  //give the sensor some time to calibrate
  Serial.print("calibrating sensor ");
  for(int i = 0; i < calibrationTime; i++){
    Serial.print(".");
    delay(1000);
    }
  Serial.println(" done");
  Serial.println("SENSOR ACTIVE");
  delay(50);
   nPIR_detect = 0;  

  // Test ESP8266 module.
  Serial.println("AT");
  delay(5000);
  if(Serial.find("OK")){
    connectWiFi();
  }
}

void loop(){
 if(digitalRead(pirPin) == HIGH){
       digitalWrite(BUILTIN_LED, HIGH);   //the led visualizes the sensors output pin state
       if(lockLow){  
         //makes sure we wait for a transition to LOW before any further output is made:
         lockLow = false;            
         Serial.println("---");
         Serial.print("motion detected at ");
         Serial.print(millis()/1000);
         Serial.println(" sec"); 
         sendData(String(motion));
         delay(50);
         }         
         takeLowTime = true;
       }

     if(digitalRead(pirPin) == LOW){       
       digitalWrite(BUILTIN_LED, LOW);  //the led visualizes the sensors output pin state

       if(takeLowTime){
        lowIn = millis();          //save the time of the transition from high to LOW
        takeLowTime = false;       //make sure this is only done at the start of a LOW phase
        }
       //if the sensor is low for more than the given pause, 
       //we assume that no more motion is going to happen
       if(!lockLow && millis() - lowIn > pause){  
           //makes sure this block of code is only executed again after 
           //a new motion sequence has been detected
           lockLow = true;                        
           Serial.print("motion ended at ");      //output
           Serial.print((millis() - pause)/1000);
           Serial.println(" sec");
           delay(50);
           }
       }
}

void sendData(String motion){

  //Send the motion to IFTTT value1
  Serial.print("connecting to ");
  Serial.println(HOST);

  // Use WiFiClient class to create TCP connections
  WiFiClient client;
  const int httpPort = 80;
  if (!client.connect(HOST, httpPort)) {
    Serial.println("connection failed");
    return;
  }

  // We now create a URI for the request
  String url = "/trigger/";
  url += streamId;
  url += "/with/key/";
  url += privateKey;
  url += "?value1=";
  url += "motion";

  Serial.print("Requesting URL: ");
  Serial.println(url);

  // This will send the request to the server
  client.print(String("GET ") + url + " HTTP/1.1\r\n" +
               "Host: " + HOST + "\r\n" + 
               "Connection: close\r\n\r\n");
  delay(10);

  // Read all the lines of the reply from server and print them to Serial
  while(client.available()){
    String line = client.readStringUntil('\r');
    Serial.print(line);
  }

  Serial.println();
  Serial.println("closing connection");

}

boolean connectWiFi(){
  Serial.println("AT+CWMODE=1");
  delay(2000);
  String cmd="AT+CWJAP=\"";
  cmd+=SSID;
  cmd+="\",\"";
  cmd+=PASS;
  cmd+="\"";
  Serial.println(cmd);
  delay(5000);
  if(Serial.find("OK")){
    Serial.println("Connection");
    return true;
  }
  else{
    Serial.println("No Connection");
    return false;
  }
}

Why does a PIR sensor stay high with nodeMCU/ESP8266 board?

In essence, I never see the serial message "motion ended at.."


Solution

  • Months after but hopefully will help some others with the same problem. I was frustrated for weeks and tried several PIR modules with the same (frustrating) results, and what I found was that the problem was caused by the way I was flashing the firmware in the nodeMCU dev board.

    I had the ESP-12E and was uploading the firmware using the following command:

    esptool.py --port /dev/cu.SLAB_USBtoUART --baud 115200 write_flash -fm dio -fs 32m 0x00000 /Users/dev/nodemcu-firmware.bin
    

    and the problem was the -fm dio (Dual Flash I/O mode) parameter. Some ESP8266 modules, including the ESP-12E modules on some (not all) NodeMCU boards, are dual I/O and the firmware will only boot when flashed with --flash_mode dio or -fm dio but in my case was the source of all my headaches. Once I flashed the firmware without that option everything started to work like a charm.