I currently have 2 subplots using seaborn:
import matplotlib.pyplot as plt
import seaborn.apionly as sns
f, (ax1, ax2) = plt.subplots(2, sharex=True)
sns.distplot(df['Difference'].values, ax=ax1) #array, top subplot
sns.boxplot(df['Difference'].values, ax=ax2, width=.4) #bottom subplot
sns.stripplot([cimin, cimax], color='r', marker='d') #overlay confidence intervals over boxplot
ax1.set_ylabel('Relative Frequency') #label only the top subplot
plt.xlabel('Difference')
plt.show()
Here is the output:
I am rather stumped on how to make ax2 (the bottom figure) to become shorter relative to ax1 (the top figure). I was looking over the GridSpec (http://matplotlib.org/users/gridspec.html) documentation but I can't figure out how to apply it to seaborn objects.
Question:
Thank you for your time.
As @dnalow mentioned, seaborn
has no impact on GridSpec
, as you pass a reference to the Axes
object to the function. Like so:
import matplotlib.pyplot as plt
import seaborn.apionly as sns
import matplotlib.gridspec as gridspec
tips = sns.load_dataset("tips")
gridkw = dict(height_ratios=[5, 1])
fig, (ax1, ax2) = plt.subplots(2, 1, gridspec_kw=gridkw)
sns.distplot(tips.loc[:,'total_bill'], ax=ax1) #array, top subplot
sns.boxplot(tips.loc[:,'total_bill'], ax=ax2, width=.4) #bottom subplot
plt.show()