For weeks I've been trying to figure out how the Haskell compiler applies the (.) to fmap.
What I mean is.
:t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
:t fmap
fmap :: Functor f => (a -> b) -> f a -> f b
:t (.) fmap
(.) fmap :: Functor f => (a -> a1 -> b) -> a -> f a1 -> f b
How did the compiler arrive at the type for (.) fmap?
I was actually going to ask this question here but while I was explaining what I've tried it all came together. So now I'm just going to post the answer too.
To get this I took fmap
fmap :: Functor f => (a -> b) -> f a -> f b
fmap :: Functor f => (a -> b) -> (f a -> f b)
if
:t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
then
(b -> c) of the start of the (.) function can be replaced with
((a -> b) -> (f a -> f b))
thus I have
((a1 -> b) -> (f a1 -> f b)) -> (a -> (a1 -> b)) -> a -> (f a1 -> f b)
Since (.) has been applied to fmap, we can eliminate ((a1 -> b) -> (f a1 -> f b)) and we are left with
(a -> (a1 -> b)) -> a -> (f a1 -> f b)
Then to be extra clean we can eliminate extra parentheses.
Glguy and Hamme from the IRC Beginner-haskell channel both reminded me (->) is right associative
e.g. (a -> b -> c -> d) = (a -> (b -> (c -> d)))
so we eliminate the redundant parentheses.
(a -> a1 -> b) -> a -> f a1 -> f b
:t (.) fmap
(.) fmap :: Functor f => (a -> a1 -> b) -> a -> f a1 -> f b