I am trying to code a simple reduction (in this case a sum) over a large double array in OpenCL. I have looked at online tutorials and found that this is essentially the way to solve my problem:
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
typedef struct This_s{
__global double *nums;
int nums__javaArrayLength;
__local double *buffer;
__global double *res;
int passid;
}This;
int get_pass_id(This *this){
return this->passid;
}
__kernel void run(
__global double *nums,
int nums__javaArrayLength,
__local double *buffer,
__global double *res,
int passid
){
This thisStruct;
This* this=&thisStruct;
this->nums = nums;
this->nums__javaArrayLength = nums__javaArrayLength;
this->buffer = buffer;
this->res = res;
this->passid = passid;
{
int tid = get_local_id(0);
int i = (get_group_id(0) * get_local_size(0)) + get_local_id(0);
int gridSize = get_local_size(0) * get_num_groups(0);
int n = this->nums__javaArrayLength;
double cur = 0.0;
for (; i<n; i = i + gridSize){
cur = cur + this->nums[i];
}
this->buffer[tid] = cur;
barrier(CLK_LOCAL_MEM_FENCE);
barrier(CLK_LOCAL_MEM_FENCE);
if (tid<32){
this->buffer[tid] = this->buffer[tid] + this->buffer[(tid + 32)];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid<16){
this->buffer[tid] = this->buffer[tid] + this->buffer[(tid + 16)];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid<8){
this->buffer[tid] = this->buffer[tid] + this->buffer[(tid + 8)];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid<4){
this->buffer[tid] = this->buffer[tid] + this->buffer[(tid + 4)];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid<2){
this->buffer[tid] = this->buffer[tid] + this->buffer[(tid + 2)];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid<1){
this->buffer[tid] = this->buffer[tid] + this->buffer[(tid + 1)];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid==0){
this->res[get_group_id(0)] = this->buffer[0];
}
return;
}
}
If you are wondering about the strange this
, that is an (unfortunately necessary) artifact of aparapi, which I use to translate Java to OpenCL.
My kernel produces the correct results and, on reasonably beefy Nvidia Hardware, it is about 10x faster than a sequential sum in Java. On a Radeon R9 280 however it is comparable in performance to the simple Java code.
I have profiled the kernel with CodeXL. It tells me that MemUnitBusy is at just 6%. Why is it so low?
Turns out OpenCL is not (directly) at fault, but aparapis buffer management is.
I tried out the exact same kernel without aparapi, and the performance is good. It turns bad as soon as I use CL_MEM_USE_HOST_PTR
, which is sadly the only option when using aparapi. It seems AMD is not copying host memory to the device with that option, even after several "warmup" runs.