Another way of asking this is: can we use relative rankings from separate data sets to produce a global rank?
Say I have a variety of data sets with their own rankings based upon the criteria of cuteness for baby animals: 1) Kittens, 2) Puppies, 3) Sloths, and 4) Elephants. I used pairwise comparisons (i.e., showing people two random pictures of the animal and asking them to select the cutest one) to obtain these rankings. I also have the full amount of comparisons within data sets (i.e., all puppies were compared with each other in the puppy data set).
I'm now trying to merge the data sets together to produce a global ranking of the cutest animal.
The main issue of relative ranking is that the cutest animal in one set may not necessarily be the cutest in the other set. For example, let's say that baby elephants are considered to be less than attractive, and so, the least cutest kitten will always beat the cutest elephant. How should I get around this problem?
I am thinking of doing a few cross comparisons across data sets (Kittens vs Elephants, Puppies vs Kittens, etc) to create some sort of base importance, but this may become problematic as I add on the number of animals and the type of animals.
I was also thinking of looking further into filling in sparse matrices, but I think this is only applicable towards one data set as opposed to comparing across multiple data sets?
You can achieve your task using a rating system, like most known Elo, Glicko, or our rankade. A rating system allows to build a ranking starting from pairwise comparisons, and
Using rankade (here's a comparison with aforementioned ranking systems and Microsoft's TrueSkill) you can record outputs for 2+ items as well, while with Elo or Glicko you don't. It's extremely messy and difficult for people to rank many items, but a small multiple comparison (e.g. 3-5 animals) should be suitable and useful, in your work.