Search code examples
rprobability-densityquantregquantile-regression

Building a Cumulative distribution function after Quantile Estimation


I have this data frame with two columns (Y and X).

With quantreg package i can estimate the quantiles of Y conditional on X.

I am unable to build CUMULATIVE density function of Y conditional on X. Can anybody help me?

Estimating the quantiles:

library(quantreg)
taus=seq(0.1, 0.9, by = 0.01)
Quantis<-rq(data[,1] ~ data[,2],tau=taus,method="br")

After this, how do I generate a Cumulative distribution function (Fx)?

This is my data.frame:

structure(list(Y = c(NA, -1.793, -0.642, 1.189, -0.823, -1.715, 
1.623, 0.964, 0.395, -3.736, -0.47, 2.366, 0.634, -0.701, -1.692, 
0.155, 2.502, -2.292, 1.967, -2.326, -1.476, 1.464, 1.45, -0.797, 
1.27, 2.515, -0.765, 0.261, 0.423, 1.698, -2.734, 0.743, -2.39, 
0.365, 2.981, -1.185, -0.57, 2.638, -1.046, 1.931, 4.583, -1.276, 
1.075, 2.893, -1.602, 1.801, 2.405, -5.236, 2.214, 1.295, 1.438, 
-0.638, 0.716, 1.004, -1.328, -1.759, -1.315, 1.053, 1.958, -2.034, 
2.936, -0.078, -0.676, -2.312, -0.404, -4.091, -2.456, 0.984, 
-1.648, 0.517, 0.545, -3.406, -2.077, 4.263, -0.352, -1.107, 
-2.478, -0.718, 2.622, 1.611, -4.913, -2.117, -1.34, -4.006, 
-1.668, -1.934, 0.972, 3.572, -3.332, 1.094, -0.273, 1.078, -0.587, 
-1.25, -4.231, -0.439, 1.776, -2.077, 1.892, -1.069, 4.682, 1.665, 
1.793, -2.133, 1.651, -0.065, 2.277, 0.792, -3.469, 1.48, 0.958, 
-4.68, -2.909, 1.169, -0.941, -1.863, 1.814, -2.082, -3.087, 
0.505, -0.013, -0.12, -0.082, -1.944, 1.094, -1.418, -1.273, 
0.741, -1.001, -1.945, 1.026, 3.24, 0.131, -0.061, 0.086, 0.35, 
0.22, -0.704, 0.466, 8.255, 2.302, 9.819, 5.162, 6.51, -0.275, 
1.141, -0.56, -3.324, -8.456, -2.105, -0.666, 1.707, 1.886, -3.018, 
0.441, 1.612, 0.774, 5.122, 0.362, -0.903, 5.21, -2.927, -4.572, 
1.882, -2.5, -1.449, 2.627, -0.532, -2.279, -1.534, 1.459, -3.975, 
1.328, 2.491, -2.221, 0.811, 4.423, -3.55, 2.592, 1.196, -1.529, 
-1.222, -0.019, -1.62, 5.356, -1.885, 0.105, -1.366, -1.652, 
0.233, 0.523, -1.416, 2.495, 4.35, -0.033, -2.468, 2.623, -0.039, 
0.043, -2.015, -4.58, 0.793, -1.938, -1.105, 0.776, -1.953, 0.521, 
-1.276, 0.666, -1.919, 1.268, 1.646, 2.413, 1.323, 2.135, 0.435, 
3.747, -2.855, 4.021, -3.459, 0.705, -3.018, 0.779, 1.452, 1.523, 
-1.938, 2.564, 2.108, 3.832, 1.77, -3.087, -1.902, 0.644, 8.507
), X = c(0.056, 0.053, 0.033, 0.053, 0.062, 0.09, 0.11, 0.124, 
0.129, 0.129, 0.133, 0.155, 0.143, 0.155, 0.166, 0.151, 0.144, 
0.168, 0.171, 0.162, 0.168, 0.169, 0.117, 0.105, 0.075, 0.057, 
0.031, 0.038, 0.034, -0.016, -0.001, -0.031, -0.001, -0.004, 
-0.056, -0.016, 0.007, 0.015, -0.016, -0.016, -0.053, -0.059, 
-0.054, -0.048, -0.051, -0.052, -0.072, -0.063, 0.02, 0.034, 
0.043, 0.084, 0.092, 0.111, 0.131, 0.102, 0.167, 0.162, 0.167, 
0.187, 0.165, 0.179, 0.177, 0.192, 0.191, 0.183, 0.179, 0.176, 
0.19, 0.188, 0.215, 0.221, 0.203, 0.2, 0.191, 0.188, 0.19, 0.228, 
0.195, 0.204, 0.221, 0.218, 0.224, 0.233, 0.23, 0.258, 0.268, 
0.291, 0.275, 0.27, 0.276, 0.276, 0.248, 0.228, 0.223, 0.218, 
0.169, 0.188, 0.159, 0.156, 0.15, 0.117, 0.088, 0.068, 0.057, 
0.035, 0.021, 0.014, -0.005, -0.014, -0.029, -0.043, -0.046, 
-0.068, -0.073, -0.042, -0.04, -0.027, -0.018, -0.021, 0.002, 
0.002, 0.006, 0.015, 0.022, 0.039, 0.044, 0.055, 0.064, 0.096, 
0.093, 0.089, 0.173, 0.203, 0.216, 0.208, 0.225, 0.245, 0.23, 
0.218, -0.267, 0.193, -0.013, 0.087, 0.04, 0.012, -0.008, 0.004, 
0.01, 0.002, 0.008, 0.006, 0.013, 0.018, 0.019, 0.018, 0.021, 
0.024, 0.017, 0.015, -0.005, 0.002, 0.014, 0.021, 0.022, 0.022, 
0.02, 0.025, 0.021, 0.027, 0.034, 0.041, 0.04, 0.038, 0.033, 
0.034, 0.031, 0.029, 0.029, 0.029, 0.022, 0.021, 0.019, 0.021, 
0.016, 0.007, 0.002, 0.011, 0.01, 0.01, 0.003, 0.009, 0.015, 
0.018, 0.017, 0.021, 0.021, 0.021, 0.022, 0.023, 0.025, 0.022, 
0.022, 0.019, 0.02, 0.023, 0.022, 0.024, 0.022, 0.025, 0.025, 
0.022, 0.027, 0.024, 0.016, 0.024, 0.018, 0.024, 0.021, 0.021, 
0.021, 0.021, 0.022, 0.016, 0.015, 0.017, -0.017, -0.009, -0.003, 
-0.012, -0.009, -0.008, -0.024, -0.023)), .Names = c("Y", "X"
), row.names = c(NA, -234L), class = "data.frame")

Solution

  • The cumulative distribution function for each X is the estimate of Y at each quantile tau with X held fixed. I'm not that experienced with quantile regression, but it seems like the output of rq isn't consistent in the sense that Y vs. tau for a given X is not necessarily monotonic.

    For example, below is some code to get the cumulative distribution function for four values of X:

    library(quantreg)
    library(reshape2)
    library(ggplot2)
    
    taus=seq(0,1,0.01)
    Quantis<-rq(Y ~ X, tau=taus, method="br", data=data)
    
    # Get predictions of Y for four X values for all taus
    X = seq(min(data$X), max(data$X), length.out=4)
    pred = as.data.frame(predict(Quantis, newdata=data.frame(X)))
    pred$X = X
    

    Each row of pred is the cumulative distribution function for a given X value (where the X value is in the last column of pred). Below, we reshape this data frame to long format for plotting with ggplot.

    # Reshape predictions to long format
    pred = melt(pred, id.var="X", variable.name="tau", value.name="Y")
    pred$tau = as.numeric(gsub("tau= (.*)", "\\1", pred$tau))
    
    # Plot predictions
    ggplot(pred, aes(x=Y, y=tau, color=factor(X))) +
      geom_step() + theme_bw()
    

    enter image description here

    You can see in the plot above that the cumulative distribution functions are not monotonic. It's easier to see what's happening if we instead plot the individual regression lines for each of the 101 quantiles (i.e., the 101 values of tau). The cumulative distribution function for Y at each X are vertical slices through the plot below. However, you can see that the regression lines for each quantile often cross each other, which is equivalent to the non-monontonicity (is that a word?) in the plot above.

    To be mutually consistent, the quantile regression lines should not cross each other. As I said, I'm not that experienced with quantile regression, but maybe your data is too sparse to get stable slopes for each quantile. In particular, the single value at the left edge is problematic, but you won't get monotonic quantiles even if you remove that value.

    ggplot(pred, aes(x=X, y=Y, colour=tau, group=factor(tau))) +
      geom_point(data=data, aes(X,Y), inherit.aes=FALSE) +
      geom_line(show.legend=FALSE, alpha=0.7) +
      scale_colour_gradient2(low="red", mid="yellow", high="blue", midpoint=0.5) +
      theme_bw() 
    

    enter image description here