edit : GTX 1070, ubuntu 16.04, git hash : 3b75eb34ea2c4982fb80843be089f02d430faade
I am retraining inception model on my own data. Everything is fine until the final command :
bazel-bin/inception/flowers_train \
--config=cuda \
--train_dir="${TRAIN_DIR}" \
--data_dir="${OUTPUT_DIRECTORY}" \
--pretrained_model_checkpoint_path="${MODEL_PATH}" \
--fine_tune=True \
--initial_learning_rate=0.001 \
--input_queue_memory_factor=1
According to the logs, Tensorflow seems to be using the GPU :
I tensorflow/core/common_runtime/gpu/gpu_device.cc:951] Found device 0 with properties:
name: GeForce GTX 1070
major: 6 minor: 1 memoryClockRate (GHz) 1.7715
pciBusID 0000:03:00.0
Total memory: 7.92GiB
Free memory: 7.77GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:972] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:1041] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:03:00.0)
But when I am checking the learning in TensorBoard, the net is using mainly the CPU (blue /device:CPU:0, green /device:GPU:0):
TensorBoard graph:
I have tried this two TensorFlow setups :
Install from the source with nvidia-367 drivers, CUDA8 8.0, cuDNN v5, source from the master (16/10/06 - r11?). compiled for GPU use:
bazel build -c opt --config=cuda //tensorflow/cc:tutorials_example_trainer
bazel-bin/tensorflow/cc/tutorials_example_trainer --use_gpu
bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
docker GPU image of Tensorflow on a PC with a GTX 1070 8Go
nvidia-docker run -it -p 8888:8888 -p 6006:6006 gcr.io/tensorflow/tensorflow:latest-gpu /bin/bash
Any help ?
According to this issue , the inception 'tower' is where the bulk of the work is being performed. So it seems mostly fine.
Except there is still something weird.
Running watch nvidia-smi
gives :
Mon Oct 10 10:31:04 2016
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.48 Driver Version: 367.48 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 1070 Off | 0000:03:00.0 On | N/A |
| 29% 57C P2 41W / 230W | 7806MiB / 8113MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1082 G /usr/lib/xorg/Xorg 69MiB |
| 0 3082 C /usr/bin/python 7729MiB |
+-----------------------------------------------------------------------------+
While top gives :
PID UTIL. PR NI VIRT RES SHR S %CPU %MEM TEMPS+ COM.
3082 root 20 0 26,739g 3,469g 1,657g S 101,3 59,7 7254:50 python
GPU seems to be ignored...