I have a question on numpy.linalg.eig()
.
Here's my covariance matrix after normalizing /standardizing the data.
lr_cov = np.cov(lr_norm, rowvar = False, ddof = 0)
lr_cov
array([[ 0.95454545, 0.88156287, 0.8601369 ],
[ 0.88156287, 0.95454545, 0.87367031],
[ 0.8601369 , 0.87367031, 0.95454545]])
I use the eig() function as below -- no problems here.
eig_val, eig_vec = np.linalg.eig(lr_cov)
eig_vec
array([[-0.57694452, -0.6184592 , 0.53351967],
[-0.57990975, -0.14982268, -0.80078577],
[-0.57518668, 0.77140222, 0.27221115]])
eig_val
array([ 2.69815538, 0.09525935, 0.07022164])
But when I proceed to sanity check that (Covariance Matrix)*(Eigen vector) = (Eigen Value)*(Eigen Vector), the LHS and RHS in this case don't match up.
lr_cov*eig_vec
array([[-0.55071977, -0.54521067, 0.45889996],
[-0.5112269 , -0.14301256, -0.69962276],
[-0.49473928, 0.67395122, 0.25983791]])
eig_val*eig_vec
array([[-1.55668595, -0.05891402, 0.03746463],
[-1.5646866 , -0.01427201, -0.05623249],
[-1.55194302, 0.07348327, 0.01911511]])
What I am doing incorrectly?
Two points:
*
is element-wise multipication. Use the dot()
method for matrix multiplication.eig_val
is a 1d array. Convert it to a 2d square diagonal array with np.diag(eig_val)
.Example:
In [70]: cov
Out[70]:
array([[ 0.95454545, 0.88156287, 0.8601369 ],
[ 0.88156287, 0.95454545, 0.87367031],
[ 0.8601369 , 0.87367031, 0.95454545]])
In [71]: eig_val, eig_vec = np.linalg.eig(cov)
In [72]: cov.dot(eig_vec)
Out[72]:
array([[-1.55668595, -0.05891401, 0.03746463],
[-1.56468659, -0.01427202, -0.05623249],
[-1.55194302, 0.07348327, 0.01911511]])
In [73]: eig_vec.dot(np.diag(eig_val))
Out[73]:
array([[-1.55668595, -0.05891401, 0.03746463],
[-1.56468659, -0.01427202, -0.05623249],
[-1.55194302, 0.07348327, 0.01911511]])
In the last line, np.diag(eig_val)
is on the right in order to multiply each column of eig_vec
by the corresponding eigenvalue.
If you take advantage of numpy's broadcasting, you don't have to use np.diag(eig_val)
, and you can use element-wise multiplication (in either order, since element-wise multiplication is commutative):
In [75]: eig_vec * eig_val # element-wise multiplication with broadcasting
Out[75]:
array([[-1.55668595, -0.05891401, 0.03746463],
[-1.56468659, -0.01427202, -0.05623249],
[-1.55194302, 0.07348327, 0.01911511]])
In [76]: eig_val * eig_vec
Out[76]:
array([[-1.55668595, -0.05891401, 0.03746463],
[-1.56468659, -0.01427202, -0.05623249],
[-1.55194302, 0.07348327, 0.01911511]])