While I was reading http://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/#id1 question came:
How does PIC shared library after being loaded somewhere in virtual address space of the process knows how to reference external variables?
Here is code of shared library in question:
#include <stdio.h>
extern long var;
void
shara_func(void)
{
printf("%ld\n", var);
}
Produce object code, then shared object(library):
gcc -fPIC -c lib1.c # produce PIC lib1.o
gcc -fPIC -shared lib1.o -o liblib1.so # produce PIC shared library
Disassemble shara_func
in shared library:
objdump -d liblib1.so
...
00000000000006d0 <shara_func>:
6d0: 55 push %rbp
6d1: 48 89 e5 mov %rsp,%rbp
6d4: 48 8b 05 fd 08 20 00 mov 0x2008fd(%rip),%rax # 200fd8 <_DYNAMIC+0x1c8>
6db: 48 8b 00 mov (%rax),%rax
6de: 48 89 c6 mov %rax,%rsi
6e1: 48 8d 3d 19 00 00 00 lea 0x19(%rip),%rdi # 701 <_fini+0x9>
6e8: b8 00 00 00 00 mov $0x0,%eax
6ed: e8 be fe ff ff callq 5b0 <printf@plt>
6f2: 90 nop
6f3: 5d pop %rbp
6f4: c3 retq
...
I see that instruction at 0x6d4 address moves some address that is relative to PC to rax
, I suppose that is the entry in GOT, GOT referenced relatively from PC to get address of external variable var
at runtime(it is resolved at runtime depending where var
was loaded).
Then after executing instruction at 0x6db we get external variable's actual content placed in rax, then move value from rax to rsi - second function parameter passed in register.
I was thinking that there is only one GOT in process memory, however, see that library references GOT? How shared library knows offset to process's GOT when it(PIC library) does not know where in process memory it would be loaded? Or does each shared library has its own GOT that is loaded with her? I would be very glad if you clarify my confusion.
I was thinking that there is only one GOT in process memory, however, see that library references GOT?
We clearly see .got
section as part of the library. With readelf
we can find what are the sections of the library and how they are loaded:
readelf -e liblib1.so
...
Section Headers:
[21] .got PROGBITS 0000000000200fd0 00000fd0
0000000000000030 0000000000000008 WA 0 0 8
...
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x000000000000078c 0x000000000000078c R E 200000
LOAD 0x0000000000000df8 0x0000000000200df8 0x0000000000200df8
0x0000000000000230 0x0000000000000238 RW 200000
...
Section to Segment mapping:
Segment Sections...
00 ... .init .plt .plt.got .text .fini .rodata .eh_frame_hdr .eh_frame
01 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss
02 .dynamic
So, there is section .got
, but runtime linker ld-linux.so.2
(registered as interpreter for dynamic ELFs) does not load sections; it loads segments as described by Program header with LOAD
type. .got
is part of segment 01 LOAD with RW flags. Other library will have own GOT (think about compiling liblib2.so from the similar source, it will not know anything about liblib1.so and will have own GOT); so it is "Global" only for the library; but not to the whole program image in memory after loading.
How shared library knows offset to process's GOT when it(PIC library) does not know where in process memory it would be loaded?
It is done by static linker when it takes several ELF objects and combine them all into one library. Linker will generate .got
section and put it to some place with known offset from the library code (pc-relative, rip-relative). It writes instructions to program header, so the relative address is known and it is the only needed address to access own GOT.
When objdump
is used with -r
/ -R
flags, it will print information about relocations (static / dynamic) recorded in the ELF file or library; it can be combined with -d flag. lib1.o object had relocation here; no known offset to GOT, mov has all zero:
$ objdump -dr lib1.o
lib1.o: file format elf64-x86-64
Disassembly of section .text:
0000000000000000 <shara_func>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 48 8b 05 00 00 00 00 mov 0x0(%rip),%rax # b <shara_func+0xb>
7: R_X86_64_REX_GOTPCRELX var-0x4
b: 48 8b 00 mov (%rax),%rax
e: 48 89 c6 mov %rax,%rsi
In library file this was converted to relative address by gcc -shared
(it calls ld
variant collect2
inside):
$ objdump -d liblib1.so
liblib1.so: file format elf64-x86-64
00000000000006d0 <shara_func>:
6d0: 55 push %rbp
6d1: 48 89 e5 mov %rsp,%rbp
6d4: 48 8b 05 fd 08 20 00 mov 0x2008fd(%rip),%rax # 200fd8 <_DYNAMIC+0x1c8>
And finally, there is dynamic relocation into GOT to put here actual address of var (done by rtld - ld-linux.so.2):
$ objdump -R liblib1.so
liblib1.so: file format elf64-x86-64
DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
...
0000000000200fd8 R_X86_64_GLOB_DAT var
Let's use your lib, adding executable with definition, compiling it and running with rtld debugging enabled:
$ cat main.c
long var;
int main(){
shara_func();
return 0;
}
$ gcc main.c -llib1 -L. -o main -Wl,-rpath=`pwd`
$ LD_DEBUG=all ./main 2>&1 |less
...
311: symbol=var; lookup in file=./main [0]
311: binding file /test3/liblib1.so [0] to ./main [0]: normal symbol `var'
So, linker was able to bind relocation for var
to the "main" ELF file where it is defined:
$ gdb -q ./main
Reading symbols from ./main...(no debugging symbols found)...done.
(gdb) b main
Breakpoint 1 at 0x4006da
(gdb) r
Starting program: /test3/main
Breakpoint 1, 0x00000000004006da in main ()
(gdb) disassemble shara_func
Dump of assembler code for function shara_func:
0x00007ffff7bd56d0 <+0>: push %rbp
0x00007ffff7bd56d1 <+1>: mov %rsp,%rbp
0x00007ffff7bd56d4 <+4>: mov 0x2008fd(%rip),%rax # 0x7ffff7dd5fd8
0x00007ffff7bd56db <+11>: mov (%rax),%rax
0x00007ffff7bd56de <+14>: mov %rax,%rsi
No changes in mov in your func. rax after func+4 is 0x601040, it is third mapping of ./main according to /proc/$pid/maps:
00601000-00602000 rw-p 00001000 08:07 6691394 /test3/main
And it was loaded from main after this program header (readelf -e ./main)
LOAD 0x0000000000000df0 0x0000000000600df0 0x0000000000600df0
0x0000000000000248 0x0000000000000258 RW 200000
It is part of .bss section:
[26] .bss NOBITS 0000000000601038 00001038
0000000000000010 0000000000000000 WA 0 0 8
After stepping to func+11, we can check value in GOT:
(gdb) b shara_func
(gdb) r
(gdb) si
0x00007ffff7bd56db in shara_func () from /test3/liblib1.so
1: x/i $pc
=> 0x7ffff7bd56db <shara_func+11>: mov (%rax),%rax
(gdb) p $rip+0x2008fd
$6 = (void (*)()) 0x7ffff7dd5fd8
(gdb) x/2x 0x7ffff7dd5fd8
0x7ffff7dd5fd8: 0x00601040 0x00000000
Who did write correct value to this GOT entry?
(gdb) watch *0x7ffff7dd5fd8
Hardware watchpoint 2: *0x7ffff7dd5fd8
(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /test3/main
Hardware watchpoint 2: *0x7ffff7dd5fd8
Old value = <unreadable>
New value = 6295616
0x00007ffff7de36bf in elf_machine_rela (..) at ../sysdeps/x86_64/dl-machine.h:435
(gdb) bt
#0 0x00007ffff7de36bf in elf_machine_rela (...) at ../sysdeps/x86_64/dl-machine.h:435
#1 elf_dynamic_do_Rela (...) at do-rel.h:137
#2 _dl_relocate_object (...) at dl-reloc.c:258
#3 0x00007ffff7ddaf5b in dl_main (...) at rtld.c:2072
#4 0x00007ffff7df0462 in _dl_sysdep_start (start_argptr=start_argptr@entry=0x7fffffffde20,
dl_main=dl_main@entry=0x7ffff7dd89a0 <dl_main>) at ../elf/dl-sysdep.c:249
#5 0x00007ffff7ddbe7a in _dl_start_final (arg=0x7fffffffde20) at rtld.c:307
#6 _dl_start (arg=0x7fffffffde20) at rtld.c:413
#7 0x00007ffff7dd7cc8 in _start () from /lib64/ld-linux-x86-64.so.2
(gdb) x/2x 0x7ffff7dd5fd8
0x7ffff7dd5fd8: 0x00601040 0x00000000
Runtime linker of glibc did (rtld.c), just before calling main
- here is the source (bit different version) - http://code.metager.de/source/xref/gnu/glibc/sysdeps/x86_64/dl-machine.h
329 case R_X86_64_GLOB_DAT:
330 case R_X86_64_JUMP_SLOT:
331 *reloc_addr = value + reloc->r_addend;
332 break;
With reverse stepping we can get history of code and old value = 0:
(gdb) b _dl_relocate_object
(gdb) r
(gdb) dis 3
(gdb) target record-full
(gdb) c
(gdb) disp/i $pc
(gdb) rsi
(gdb) rsi
(gdb) rsi
(gdb) x/2x 0x7ffff7dd5fd8
0x7ffff7dd5fd8: 0x00000000 0x00000000
=> 0x7ffff7de36b8 <_dl_relocate_object+1560>: add 0x10(%rbx),%rax
=> 0x7ffff7de36bc <_dl_relocate_object+1564>: mov %rax,(%r10)
=> 0x7ffff7de36bf <_dl_relocate_object+1567>: nop