I'm having a speed problem running a python / numypy code. I don't know how to make it faster, maybe someone else?
Assume there is a surface with two triangulation, one fine (..._fine) with M points, one coarse with N points. Also, there's data on the coarse mesh at every point (N floats). I'm trying to do the following:
For every point on the fine mesh, find the k closest points on coarse mesh and get mean value. Short: interpolate data from coarse to fine.
My code right now goes like that. With large data (in my case M = 2e6, N = 1e4) the code runs about 25 minutes, guess due to the explicit for loop not going into numpy. Any ideas how to solve that one with smart indexing? M x N arrays blowing the RAM..
import numpy as np
p_fine.shape => m x 3
p.shape => n x 3
data_fine = np.empty((m,))
for i, ps in enumerate(p_fine):
data_fine[i] = np.mean(data_coarse[np.argsort(np.linalg.norm(ps-p,axis=1))[:k]])
Cheers!
First of all thanks for the detailed help.
First, Divakar, your solutions gave substantial speed-up. With my data, the code ran for just below 2 minutes depending a bit on the chunk size.
I also tried my way around sklearn and ended up with
def sklearnSearch_v3(p, p_fine, k):
neigh = NearestNeighbors(k)
neigh.fit(p)
return data_coarse[neigh.kneighbors(p_fine)[1]].mean(axis=1)
which ended up being quite fast, for my data sizes, I get the following
import numpy as np
from sklearn.neighbors import NearestNeighbors
m,n = 2000000,20000
p_fine = np.random.rand(m,3)
p = np.random.rand(n,3)
data_coarse = np.random.rand(n)
k = 3
yields
%timeit sklearv3(p, p_fine, k)
1 loop, best of 3: 7.46 s per loop