I have 2 DataFrame
s:
I need union like this:
The unionAll
function doesn't work because the number and the name of columns are different.
How can I do this?
In Scala you just have to append all missing columns as nulls
.
import org.apache.spark.sql.functions._
// let df1 and df2 the Dataframes to merge
val df1 = sc.parallelize(List(
(50, 2),
(34, 4)
)).toDF("age", "children")
val df2 = sc.parallelize(List(
(26, true, 60000.00),
(32, false, 35000.00)
)).toDF("age", "education", "income")
val cols1 = df1.columns.toSet
val cols2 = df2.columns.toSet
val total = cols1 ++ cols2 // union
def expr(myCols: Set[String], allCols: Set[String]) = {
allCols.toList.map(x => x match {
case x if myCols.contains(x) => col(x)
case _ => lit(null).as(x)
})
}
df1.select(expr(cols1, total):_*).unionAll(df2.select(expr(cols2, total):_*)).show()
+---+--------+---------+-------+
|age|children|education| income|
+---+--------+---------+-------+
| 50| 2| null| null|
| 34| 4| null| null|
| 26| null| true|60000.0|
| 32| null| false|35000.0|
+---+--------+---------+-------+
Both temporal DataFrames
will have the same order of columns, because we are mapping through total
in both cases.
df1.select(expr(cols1, total):_*).show()
df2.select(expr(cols2, total):_*).show()
+---+--------+---------+------+
|age|children|education|income|
+---+--------+---------+------+
| 50| 2| null| null|
| 34| 4| null| null|
+---+--------+---------+------+
+---+--------+---------+-------+
|age|children|education| income|
+---+--------+---------+-------+
| 26| null| true|60000.0|
| 32| null| false|35000.0|
+---+--------+---------+-------+