I have a very large dataframe (about 1.1M rows) and I am trying to sample it.
I have a list of indexes (about 70,000 indexes) that I want to select from the entire dataframe.
This is what Ive tried so far but all these methods are taking way too much time:
Method 1 - Using pandas :
sample = pandas.read_csv("data.csv", index_col = 0).reset_index()
sample = sample[sample['Id'].isin(sample_index_array)]
Method 2 :
I tried to write all the sampled lines to another csv.
f = open("data.csv",'r')
out = open("sampled_date.csv", 'w')
out.write(f.readline())
while 1:
total += 1
line = f.readline().strip()
if line =='':
break
arr = line.split(",")
if (int(arr[0]) in sample_index_array):
out.write(",".join(e for e in (line)))
Can anyone please suggest a better method? Or how I can modify this to make it faster?
Thanks
We don't have your data, so here is an example with two options:
Index
object to select a subset via the .iloc
selection methodskiprows
parameterGiven
A collection of indices and a (large) sample DataFrame
written to test.csv
:
import pandas as pd
import numpy as np
indices = [1, 2, 3, 10, 20, 30, 67, 78, 900, 2176, 78776]
df = pd.DataFrame(np.random.randint(0, 100, size=(1000000, 4)), columns=list("ABCD"))
df.to_csv("test.csv", header=False)
df.info()
Output
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 4 columns):
A 1000000 non-null int32
B 1000000 non-null int32
C 1000000 non-null int32
D 1000000 non-null int32
dtypes: int32(4)
memory usage: 15.3 MB
Code
Option 1 - after reading
Convert a sample list of indices to an Index
object and slice the loaded DataFrame
:
idxs = pd.Index(indices)
subset = df.iloc[idxs, :]
print(subset)
The .iat
and .at
methods are even faster, but require scalar indices.
Option 2 - while reading (Recommended)
We can write a predicate that keeps selected indices as the file is being read (more efficient):
pred = lambda x: x not in indices
data = pd.read_csv("test.csv", skiprows=pred, index_col=0, names="ABCD")
print(data)
See also the issue that led to extending skiprows
.
Results
The same output is produced from the latter options:
A B C D
1 74 95 28 4
2 87 3 49 94
3 53 54 34 97
10 58 41 48 15
20 86 20 92 11
30 36 59 22 5
67 49 23 86 63
78 98 63 60 75
900 26 11 71 85
2176 12 73 58 91
78776 42 30 97 96