I was doing my homework and accidentally found a strange inconsistency in the algorithm's speed.
Here are two code versions of the same function but with a difference. In the first version, I used generators
three times to filter an array and in the second version, I used a for
loop with three conditional statements to do the same filter work.
So, here is the code of the first version:
def kth_order_statistic(array, k):
pivot = (array[0] + array[len(array) - 1]) // 2
l = [x for x in array if x < pivot]
m = [x for x in array if x == pivot]
r = [x for x in array if x > pivot]
if k <= len(l):
return kth_order_statistic(l, k)
elif k > len(l) + len(m):
return kth_order_statistic(r, k - len(l) - len(m))
else:
return m[0]
and here is the code of the second version:
def kth_order_statistic2(array, k):
pivot = (array[0] + array[len(array) - 1]) // 2
l = []
m = []
r = []
for x in array:
if x < pivot:
l.append(x)
elif x > pivot:
r.append(x)
else:
m.append(x)
if k <= len(l):
return kth_order_statistic2(l, k)
elif k > len(l) + len(m):
return kth_order_statistic2(r, k - len(l) - len(m))
else:
return m[0]
The IPython output for the first version is:
In [4]: %%timeit
...: A = range(100000)
...: shuffle(A)
...: k = randint(1, len(A)-1)
...: order_statisctic(A, k)
...:
10 loops, best of 3: 120 ms per loop
And the IPython output for the second version is:
In [5]: %%timeit
...: A = range(100000)
...: shuffle(A)
...: k = randint(1, len(A)-1)
...: kth_order_statistic2(A, k)
...:
10 loops, best of 3: 169 ms per loop
So why is the first version faster than the second? I also made a third version which uses filter()
function instead of an array generator
and it was slower than the second version (it got 218 ms per loop)
Let's define the functions we will need to answer the question and timeit them:
In [18]: def iter():
l = [x for x in range(100) if x > 10]
....:
In [19]: %timeit iter()
100000 loops, best of 3: 7.92 µs per loop
In [20]: def loop():
l = []
for x in range(100):
if x > 10:
l.append(x)
....:
In [21]: %timeit loop()
10000 loops, best of 3: 20 µs per loop
In [22]: def loop_fast():
l = []
for x in range(100):
if x > 10:
pass
....:
In [23]: %timeit loop_fast()
100000 loops, best of 3: 4.69 µs per loop
we can see that the for loops without the append command is as fast as the list comprehension. In fact, if we have a look at the bytecode we can see that in the case of the list comprehension python is able to use a built-in bytecode command called LIST_APPEND instead of:
As you can see from the output below the previous bytecode are missing with list comprehension and with the "loop_fast" function. Comparing the timeit of the three function is clear that those are responsible for the different timing of the three methods.
In [27]: dis.dis(iter)
2 0 BUILD_LIST 0
3 LOAD_GLOBAL 0 (range)
6 LOAD_CONST 1 (1)
9 LOAD_CONST 2 (100)
12 CALL_FUNCTION 2
15 GET_ITER
>> 16 FOR_ITER 24 (to 43)
19 STORE_FAST 0 (x)
22 LOAD_FAST 0 (x)
25 LOAD_CONST 2 (100)
28 COMPARE_OP 4 (>)
31 POP_JUMP_IF_FALSE 16
34 LOAD_FAST 0 (x)
37 LIST_APPEND 2
40 JUMP_ABSOLUTE 16
>> 43 STORE_FAST 1 (l)
46 LOAD_CONST 0 (None)
49 RETURN_VALUE
In [28]: dis.dis(loop)
2 0 BUILD_LIST 0
3 STORE_FAST 0 (1)
3 6 SETUP_LOOP 51 (to 60)
9 LOAD_GLOBAL 0 (range)
12 LOAD_CONST 1 (1)
15 LOAD_CONST 2 (100)
18 CALL_FUNCTION 2
21 GET_ITER
>> 22 FOR_ITER 34 (to 59)
25 STORE_FAST 1 (x)
4 28 LOAD_FAST 1 (x)
31 LOAD_CONST 3 (10)
34 COMPARE_OP 4 (>)
37 POP_JUMP_IF_FALSE 22
5 40 LOAD_FAST 0 (l)
43 LOAD_ATTR 1 (append)
46 LOAD_FAST 1 (x)
49 CALL_FUNCTION 1
52 POP_TOP
53 JUMP_ABSOLUTE 22
56 JUMP_ABSOLUTE 22
>> 59 POP_BLOCK
>> 60 LOAD_CONST 0 (None)
63 RETURN_VALUE
In [29]: dis.dis(loop_fast)
2 0 BUILD_LIST 0
3 STORE_FAST 0 (1)
3 6 SETUP_LOOP 38 (to 47)
9 LOAD_GLOBAL 0 (range)
12 LOAD_CONST 1 (1)
15 LOAD_CONST 2 (100)
18 CALL_FUNCTION 2
21 GET_ITER
>> 22 FOR_ITER 21 (to 46)
25 STORE_FAST 1 (x)
4 28 LOAD_FAST 1 (x)
31 LOAD_CONST 3 (10)
34 COMPARE_OP 4 (>)
37 POP_JUMP_IF_FALSE 22
5 40 JUMP_ABSOLUTE 22
43 JUMP_ABSOLUTE 22
>> 46 POP_BLOCK
>> 47 LOAD_CONST 0 (None)
50 RETURN_VALUE