How can I prove that these two statements are equal:
Val.shru (Val.and a (Vint b)) (Vint c) = Vint ?3434 /\ ?3434 <> d
Val.shru (Val.and a (Vint b)) (Vint c) <> d
The concept is pretty simple but stuck in finding the right tactic to solve it. This is actually the Lemma I'm going to prove:
Require Import compcert.common.Values.
Require Import compcert.lib.Coqlib.
Require Import compcert.lib.Integers.
Lemma val_remains_int:
forall (a : val) (b c d: int),
(Val.shru (Val.and a (Vint b)) (Vint c)) <> (Vint d) ->
(exists (e : int), (Val.shru (Val.and a (Vint b)) (Vint c)) = (Vint e) /\ e <> d).
Proof.
intros.
eexists.
...
Admitted.
Thanks,
If you can construct a value of type int
(i0
in the example below), then this lemma does not hold:
Require Import compcert.lib.Coqlib.
Require Import compcert.lib.Integers.
Require Import compcert.common.Values.
Variable i0 : int.
Fact counter_example_to_val_remains_int:
~ forall (a : val) (b c d: int),
(Val.shru (Val.and a (Vint b)) (Vint c)) <> (Vint d) ->
(exists (e : int),
(Val.shru (Val.and a (Vint b)) (Vint c)) = (Vint e)
/\ e <> d).
Proof.
intro H.
assert (Vundef <> Vint i0) as H0 by easy.
specialize (H Vundef i0 i0 i0 H0); clear H0.
simpl in H.
destruct H as (? & contra & _).
discriminate contra.
Qed.
There are at least two reasons:
Val.and
and Val.shru
return Vundef
for all arguments that are not Vint
(it's an instance of the GIGO principle);Val.shru
).As for the modified lemma you mentioned in your comment, simple reflexivity
would do:
Lemma val_remains_int: forall a b c d: int,
Vint (Int.shru (Int.and a b) c) <> Vint d ->
exists (e : int), Vint (Int.shru (Int.and a b) c) = Vint e /\ e <> d.
Proof.
intros a b c d Hneq.
eexists. split.
- reflexivity.
- intro Heq. subst. auto.
Qed.