I have a free text description based on which I need to perform a classification. For example the description can be that of an incident. Based on the description of the incident , I need to predict the risk associated with the event . For eg : "A murder in town" - this description is a candidate for "high" risk.
I tried logistic regression but realized that currently there is support only for binary classification. For Multi class classification ( there are only three possible values ) based on free text description , what would be the most suitable algorithm? ( Linear Regression or Naive Bayes )
This is how I solved the above problem.
Though prediction accuracy is not bad ,the model has to be tuned further for better results.
Experts , please revert back if you find anything wrong.
My input data frame has two columns "Text" and "RiskClassification"
Below are the sequence of steps to predict using Naive Bayes in Java
sqlContext.udf().register("myUDF", new UDF1<String, Integer>() {
@Override
public Integer call(String input) throws Exception {
if ("LOW".equals(input))
return 1;
if ("MEDIUM".equals(input))
return 2;
if ("HIGH".equals(input))
return 3;
return 0;
}
}, DataTypes.IntegerType);
samplingData = samplingData.withColumn("label", functions.callUDF("myUDF", samplingData.col("riskClassification")));
For eg :
DataFrame lowRisk = samplingData.filter(samplingData.col("label").equalTo(1));
DataFrame lowRiskTraining = lowRisk.sample(false, 0.8);
Union All the dataframes to build the complete training data
Building test data is slightly tricky . Test Data should have all data which is not present in the training data
Start transformation of training data and build the model
6 . Tokenize the text column in the training data set
Tokenizer tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words");
DataFrame tokenized = tokenizer.transform(trainingRiskData);
StopWordsRemover remover = new StopWordsRemover().setInputCol("words").setOutputCol("filtered");
DataFrame stopWordsRemoved = remover.transform(tokenized);
int numFeatures = 20;
HashingTF hashingTF = new HashingTF().setInputCol("filtered").setOutputCol("rawFeatures")
.setNumFeatures(numFeatures);
DataFrame rawFeaturizedData = hashingTF.transform(stopWordsRemoved);
IDF idf = new IDF().setInputCol("rawFeatures").setOutputCol("features");
IDFModel idfModel = idf.fit(rawFeaturizedData);
DataFrame featurizedData = idfModel.transform(rawFeaturizedData);
JavaRDD<LabeledPoint> labelledJavaRDD = featurizedData.select("label", "features").toJavaRDD()
.map(new Function<Row, LabeledPoint>() {
@Override
public LabeledPoint call(Row arg0) throws Exception {
LabeledPoint labeledPoint = new LabeledPoint(new Double(arg0.get(0).toString()),
(org.apache.spark.mllib.linalg.Vector) arg0.get(1));
return labeledPoint;
}
});
NaiveBayes naiveBayes = new NaiveBayes(1.0, "multinomial");
NaiveBayesModel naiveBayesModel = naiveBayes.train(labelledJavaRDD.rdd(), 1.0);
Run all the above transformations on the test data also
Loop through the test data frame and perform the below actions
Create a LabeledPoint using the "label" and "features" in the test data frame
For eg : If the test data frame has label and features in the third and seventh column , then
LabeledPoint labeledPoint = new LabeledPoint(new Double(dataFrameRow.get(3).toString()),
(org.apache.spark.mllib.linalg.Vector) dataFrameRow.get(7));
double predictedLabel = naiveBayesModel.predict(labeledPoint.features());
Add the predicted label also as a column to the test data frame.
Now test data frame has the expected label and the predicted label.
You can export the test data to csv and do analysis or you can compute the accuracy programatically as well.