I'm self-taught in R and this is my first StackOverflow question. I apologize if this is an obvious issue; please be kind.
Short Version of my Question
I wrote a custom function to calculate the percent change in a variable year over year. I would like to use purrr
's map_at
function to apply my custom function to a vector of variable names. My custom function works when applied to a single variable, but fails when I chain it using map_a
My custom function
calculate_delta <- function(df, col) {
#generate variable name
newcolname = paste("d", col, sep="")
#get formula for first difference.
calculate_diff <- lazyeval::interp(~(a + lag(a))/a, a = as.name(col))
#pass formula to mutate, name new variable the columname generated above
df %>%
mutate_(.dots = setNames(list(calculate_diff), newcolname)) }
When I apply this function to a single variable in the mtcars dataset, the output is as expected (although obviously the meaning of the result is non-sensical).
calculate_delta(mtcars, "wt")
Attempt to Apply the Function to a Character Vector Using Purrr
I think that I'm having trouble conceptualizing how map_at passes arguments to the function. All of the example snippets I can find online use map_at with functions like is.character
, which don't require additional arguments. Here are my attempts at applying the function using purrr
.
vars <- c("wt", "mpg")
mtcars %>% map_at(vars, calculate_delta)
This gives me this error message
Error in paste("d", col, sep = "") : argument "col" is missing, with no default
I assume this is because map_at is passing vars
as the df
, and not passing an argument for col
. To get around that issue, I tried the following:
vars <- c("wt", "mpg")
mtcars %>% map_at(vars, calculate_delta, df = .)
That throws me this error:
Error: unrecognised index type
I've monkeyed around with a bunch of different versions, including removing the df
argument from the calculate_delta
function, but I have had no luck.
Other potential solutions
1) A version of this using sapply
, rather than purrr
. I've tried solving the problem that way and had similar trouble. And my goal is to figure out a way to do this using purrr, if that is possible. Based on my understanding of purrr
, this seems like a typical use case.
2) I can obviously think of how I would implement this using a for loop, but I'm trying to avoid that if possible for similar reasons.
Clearly I'm thinking about this wrong. Please help!
EDIT 1
To clarify, I am curious if there is a method of repeatedly transforming variables that accomplishes two things.
1) Generates new variables within the original tbl_df
without replacing replace the columns being mutated (as is the case when using dplyr
's mutate_at
).
2) Automatically generates new variable labels.
3) If possible, accomplishes what I've described by applying a single function using map_at
.
It may be that this is not possible, but I feel like there should be an elegant way to accomplish what I am describing.
Try simplifying the process:
delta <- function(x) (x + dplyr::lag(x)) /x
cols <- c("wt", "mpg")
#This
library(dplyr)
mtcars %>% mutate_at(cols, delta)
#Or
library(purrr)
mtcars %>% map_at(cols, delta)
#If necessary, in a function
f <- function(df, cols) {
df %>% mutate_at(cols, delta)
}
f(iris, c("Sepal.Width", "Petal.Length"))
f(mtcars, c("wt", "mpg"))
Edit
If you would like to embed new names after, we can write a custom pipe-ready function:
Rename <- function(object, old, new) {
names(object)[names(object) %in% old] <- new
object
}
mtcars %>%
mutate_at(cols, delta) %>%
Rename(cols, paste0("lagged",cols))
If you want to rename the resulting lagged variables:
mtcars %>% mutate_at(cols, funs(lagged = delta))