I have two dataframes of coordinates archivo1 and archivo2, I need the closest point (id) of the second dataframe in the first one. Until now my code is:
import pandas as pd
import numpy as np
def getDistance(archivo1,lat,log):
R = 6371
archivo1['dLat'] =(lat-archivo1['lat']).apply(deg2rad)/2
archivo1['dLon'] =(log-archivo1['log']).apply(deg2rad)/2
archivo1['a']=(archivo1['dLat'].apply(math.sin))*(archivo1['dLat'].apply(math.sin))+(archivo1['lat'].apply(deg2rad).apply(math.cos))*(math.cos(deg2rad(lat)))*(archivo1['dLon'].apply(math.sin))*(archivo1['dLon'].apply(math.sin))
archivo1['b']= archivo1['a'].apply(math.sqrt)/(1-archivo1['a'].apply(math.sqrt))
archivo1['Distancia']=R*2*archivo1['b'].apply(math.atan)
def deg2rad(deg):
return deg * (math.pi/180)
for i in range(len(archivo1)):
getDistance(archivo1,archivo2['lat'].iloc[i],archivo2['long'].iloc[i])
archivo1['id'].iloc[i]=str(archivo2[archivo2['Distancia']==archivo2['Distancia'].min()]['id'].iloc[0])
The code runs and give me the expected results, nevertheless the first file have 7 millions and the first file 70k so it takes 7 days running. Could anyone help me to optimize it?
This is the sample of the two files:
This is the file 2 to look up:
File 2:
id longitude latitude
L10F10P1 -72.61521393 8.290479554
L10F10P10 -72.61517542 8.290583772
L10F10P100 -72.61481425 8.290812192
L10F10P101 -72.61484522 8.290877898
L10F10P102 -72.61488579 8.290968212
L10F10P103 -72.61492075 8.291033898
L10F10P104 -72.61495586 8.291095669
L10F10P105 -72.61499304 8.291166076
L10F10P106 -72.61503357 8.291235121
L10F10P107 -72.61508271 8.291330912
L10F10P108 -72.61516194 8.291456605
L10F10P109 -72.61519939 8.291548893
L10F10P11 -72.61522969 8.290676982
L10F10P110 -72.61522794 8.291592503
[76701 rows x 9 columns]
File 1:
latitude longitude
8.318648471 -72.6132329
8.318648678 -72.6134567
8.318648971 -72.6133456
8.318678421 -72.6138765
8.319765345 -72.6137658
[6877229 rows x 10 columns]
Without an example I will not write an exact code but suggest improvements line by line. The general idea is that apply
is generally quite slow, as it is essentially a loop behind the scenes.
This is certainly slow:
archivo1['dLat'] = (lat-archivo1['lat']).apply(deg2rad)/2
This will be better:
archivo1['dLat'] = (lat-archivo1['lat']) * math.pi/180/2
Using numpy
functions rather than apply math
functions should also be faster:
np.sin(archivo1['dLat'].values)
instead of
archivo1['dLat'].apply(math.sin)
The values
property gives you access to the underlying numpy
array. Similarly, use np.sqrt
.
Then use np.multiply
repeatedly on the numpy
arrays calculated above to multiply them element-wise. You can assign the final array back to the dataframe's column Distancia
.
The for
loop could be improved by defining a function containing the two lines inside the loop, and using apply
to apply it to each row in the dataframe.
Finally, using argmin
or idxmin
should be faster than:
archivo2[archivo2['Distancia']==archivo2['Distancia'].min()]
By putting all of the above together, you should see quite an improvement already!