I have an RDD like this:
{"key1" : "fruit" , "key2" : "US" , "key3" : "1" }
{"key1" : "fruit" , "key2" : "US" , "key3" : "2" }
{"key1" : "vegetable" , "key2" : "US" , "key3" : "1" }
{"key1" : "fruit" , "key2" : "Japan" , "key3" : "3" }
{"key1" : "vegetable" , "key2" : "Japan" , "key3" : "3" }
My goal is to first group by key1 and then group by key2 and finally add key3.
I am expecting final result like,
key1 key2 key3
"fruit" , "US" , 3
"vegetable" , "US" , 1
"fruit" , "Japan" , 3
"vegetable" , "Japan" , 3
My code begins as below ,
rdd_arm = rdd_arm.map(lambda x: x[1])
rdd_arm includes the above key : value format.
I am not sure where to go next. Could some one help me out?
Let's create your RDD:
In [1]: rdd_arm = sc.parallelize([{"key1" : "fruit" , "key2" : "US" , "key3" : "1" }, {"key1" : "fruit" , "key2" : "US" , "key3" : "2" }, {"key1" : "vegetable" , "key2" : "US" , "key3" : "1" }, {"key1" : "fruit" , "key2" : "Japan" , "key3" : "3" }, {"key1" : "vegetable" , "key2" : "Japan" , "key3" : "3" }])
In [2]: rdd_arm.collect()
Out[2]:
[{'key1': 'fruit', 'key2': 'US', 'key3': '1'},
{'key1': 'fruit', 'key2': 'US', 'key3': '2'},
{'key1': 'vegetable', 'key2': 'US', 'key3': '1'},
{'key1': 'fruit', 'key2': 'Japan', 'key3': '3'},
{'key1': 'vegetable', 'key2': 'Japan', 'key3': '3'}]
First, you have to create a new key, which will be the pair of key1
and key2
. The value of it will be key3
, so you want to do something like this:
In [3]: new_rdd = rdd_arm.map(lambda x: (x['key1'] + ", " + x['key2'], x['key3']))
In [4]: new_rdd.collect()
Out[4]:
[('fruit, US', '1'),
('fruit, US', '2'),
('vegetable, US', '1'),
('fruit, Japan', '3'),
('vegetable, Japan', '3')]
Then, we want to add the values of the keys that are duplicates, simply be calling reduceByKey(), like this:
In [5]: new_rdd = new_rdd.reduceByKey(lambda a, b: int(a) + int(b))
In [6]: new_rdd.collect()
Out[6]:
[('fruit, US', 3),
('fruit, Japan', '3'),
('vegetable, US', '1'),
('vegetable, Japan', '3')]
and we are done!
Of course, this could be one-liner, like this:
new_rdd = rdd_arm.map(lambda x: (x['key1'] + ", " + x['key2'], x['key3'])).reduceByKey(lambda a, b: int(a) + int(b))