So, suppose I want to type erase using type erasure.
I can create pseudo-methods for variants that enable a natural:
pseudo_method print = [](auto&& self, auto&& os){ os << self; };
std::variant<A,B,C> var = // create a variant of type A B or C
(var->*print)(std::cout); // print it out without knowing what it is
My question is, how do I extend this to a std::any
?
It cannot be done "in the raw". But at the point where we assign to/construct a std::any
we have the type information we need.
So, in theory, an augmented any
:
template<class...OperationsToTypeErase>
struct super_any {
std::any data;
// or some transformation of OperationsToTypeErase?
std::tuple<OperationsToTypeErase...> operations;
// ?? what for ctor/assign/etc?
};
could somehow automatically rebind some code such that the above type of syntax would work.
Ideally it would be as terse in use as the variant case is.
template<class...Ops, class Op,
// SFINAE filter that an op matches:
std::enable_if_t< std::disjunction< std::is_same<Ops, Op>... >{}, int>* =nullptr
>
decltype(auto) operator->*( super_any<Ops...>& a, any_method<Op> ) {
return std::get<Op>(a.operations)(a.data);
}
Now can I keep this to a type, yet reasonably use the lambda syntax to keep things simple?
Ideally I want:
any_method<void(std::ostream&)> print =
[](auto&& self, auto&& os){ os << self; };
using printable_any = make_super_any<&print>;
printable_any bob = 7; // sets up the printing data attached to the any
int main() {
(bob->*print)(std::cout); // prints 7
bob = 3.14159;
(bob->*print)(std::cout); // prints 3.14159
}
or similar syntax. Is this impossible? Infeasible? Easy?
Here's my solution. It looks shorter than Yakk's, and it does not use std::aligned_storage
and placement new. It additionally supports stateful and local functors (which implies that it might never be possible to write super_any<&print>
, since print
could be a local variable).
any_method:
template<class F, class Sig> struct any_method;
template<class F, class Ret, class... Args> struct any_method<F,Ret(Args...)> {
F f;
template<class T>
static Ret invoker(any_method& self, boost::any& data, Args... args) {
return self.f(boost::any_cast<T&>(data), std::forward<Args>(args)...);
}
using invoker_type = Ret (any_method&, boost::any&, Args...);
};
make_any_method:
template<class Sig, class F>
any_method<std::decay_t<F>,Sig> make_any_method(F&& f) {
return { std::forward<F>(f) };
}
super_any:
template<class...OperationsToTypeErase>
struct super_any {
boost::any data;
std::tuple<typename OperationsToTypeErase::invoker_type*...> operations = {};
template<class T, class ContainedType = std::decay_t<T>>
super_any(T&& t)
: data(std::forward<T>(t))
, operations((OperationsToTypeErase::template invoker<ContainedType>)...)
{}
template<class T, class ContainedType = std::decay_t<T>>
super_any& operator=(T&& t) {
data = std::forward<T>(t);
operations = { (OperationsToTypeErase::template invoker<ContainedType>)... };
return *this;
}
};
operator->*:
template<class...Ops, class F, class Sig,
// SFINAE filter that an op matches:
std::enable_if_t< std::disjunction< std::is_same<Ops, any_method<F,Sig>>... >{}, int> = 0
>
auto operator->*( super_any<Ops...>& a, any_method<F,Sig> f) {
auto fptr = std::get<typename any_method<F,Sig>::invoker_type*>(a.operations);
return [fptr,f, &a](auto&&... args) mutable {
return fptr(f, a.data, std::forward<decltype(args)>(args)...);
};
}
Usage:
#include <iostream>
auto print = make_any_method<void(std::ostream&)>(
[](auto&& self, auto&& os){ os << self; }
);
using printable_any = super_any<decltype(print)>;
printable_any bob = 7; // sets up the printing data attached to the any
int main() {
(bob->*print)(std::cout); // prints 7
bob = 3.14159;
(bob->*print)(std::cout); // prints 3.14159
}