I have the following dataset :
> dput(df)
structure(list(Subject = c(1L, 2L, 3L, 5L, 6L, 6L, 6L, 7L, 7L,
7L, 8L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 11L, 11L, 11L, 12L, 12L,
13L, 13L, 14L, 14L, 15L, 15L, 16L, 16L, 16L, 17L, 17L, 17L, 18L,
18L, 18L, 19L, 19L, 20L, 20L, 21L, 21L, 22L, 22L, 23L, 23L, 23L,
24L, 24L, 25L, 25L, 25L, 26L, 26L, 26L, 27L, 27L, 28L, 28L, 29L,
29L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L,
41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L,
54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L,
67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L,
80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L,
93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L,
105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L,
116L), A = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("1",
"2"), class = "factor"), B = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L), .Label = c("1", "2", "3"), class = "factor"), C = c(9.58,
9.75, 15, 10.75, 13.3, 14.42, 15.5, 9.25, 10.33, 11.33, 9.55,
11, 11.92, 14.25, 15.5, 16.42, 14.92, 16.17, 10.83, 11.92, 12.92,
7.5, 8.5, 10.33, 11.25, 13.08, 13.83, 14.92, 15.92, 9.58, 14.83,
11.92, 8.33, 9.5, 10.5, 6.8, 7.92, 9, 13.5, 10.92, 10, 11, 13,
15.58, 12.92, 11.8, 5.75, 6.75, 7.83, 11.12, 12.25, 12.08, 13.08,
14.58, 8.08, 9.17, 10.67, 10.6, 12.67, 7.83, 8.83, 9.67, 10.58,
11.75, 7, 17.17, 11.25, 13.75, 11.83, 16.92, 8.83, 7.07, 7.83,
15.08, 15.83, 16.67, 18.87, 11.92, 12.83, 7.83, 12.33, 10, 11.08,
12.08, 15.67, 11.75, 15, 14.308, 15.9064, 16.161, 16.9578, 8.90197,
16.2897, 9.05805, 10.5969, 5.15334, 9.1046, 14.1019, 18.9736,
10.9447, 14.5455, 16.172, 6.65389, 11.3171, 12.2864, 17.9929,
10.5778, 16.9195, 7.6, 7.8, 7.2, 16.7, 17, 16.5, 17, 15.1, 16,
16.4, 13.8, 13.8, 14.5, 16.1, 15.8, 15, 14.1, 15, 14.7, 15, 14.5,
10.8, 11.4, 11.3, 10.9, 11.2, 9.3, 10.8, 9.7, 8, 8.2, 8.2, 17.5,
12.6, 11.6, 10.8, 11.8, 12.3, 16.3, 17.1, 9.626283368, 14.6,
13.7), D = structure(c(2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L,
1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("1",
"2"), class = "factor"), Frontal_FA = c(0.4186705, 0.4151535,
0.4349945, 0.4003705, 0.403488, 0.407451, 0.3997135, 0.38826,
0.3742275, 0.3851655, 0.3730715, 0.3825115, 0.3698805, 0.395406,
0.39831, 0.4462415, 0.413532, 0.419088, 0.4373975, 0.4633915,
0.4411375, 0.3545255, 0.389322, 0.349402, 0.352029, 0.367792,
0.365298, 0.3790775, 0.379298, 0.36231, 0.3632755, 0.357868,
0.3764865, 0.3726645, 0.351422, 0.3353255, 0.334196, 0.3462365,
0.367369, 0.3745925, 0.3610755, 0.360576, 0.357035, 0.3554905,
0.3745615, 0.38828, 0.3293275, 0.3246945, 0.3555345, 0.375563,
0.38116, 0.387508, 0.357707, 0.413193, 0.3658075, 0.3776355,
0.362678, 0.3824945, 0.3771, 0.375347, 0.362468, 0.367618, 0.3630925,
0.3763995, 0.359458, 0.3982755, 0.3834765, 0.386135, 0.3691575,
0.388099, 0.350435, 0.3629045, 0.3456775, 0.4404815, 0.4554165,
0.425763, 0.4491515, 0.461206, 0.453745, 0.4501255, 0.4451875,
0.4369835, 0.456838, 0.437759, 0.4377635, 0.44434, 0.4436615,
0.437532, 0.4335325, 0.4407995, 0.470447, 0.4458525, 0.440322,
0.4570775, 0.4410335, 0.436045, 0.4721345, 0.4734515, 0.4373905,
0.4139465, 0.440213, 0.440281, 0.425746, 0.454377, 0.4457435,
0.488561, 0.4393565, 0.4610565, 0.3562055, 0.381041, 0.353253,
0.4265975, 0.4069595, 0.40092, 0.4261365, 0.429605, 0.425479,
0.4331755, 0.3981285, 0.4206245, 0.3798475, 0.3704155, 0.395192,
0.404436, 0.4148915, 0.416144, 0.384652, 0.3916045, 0.41005,
0.3940605, 0.3926085, 0.383909, 0.391792, 0.372398, 0.3531025,
0.414441, 0.404335, 0.3682095, 0.359976, 0.376681, 0.4173705,
0.3492685, 0.397057, 0.3940605, 0.398825, 0.3707115, 0.400228,
0.3946595, 0.4278775, 0.384037, 0.43577)), .Names = c("Subject",
"A", "B", "C", "D", "Frontal_FA"), class = "data.frame", row.names = c(NA,
-151L))
and would like to plot the fixed effect slope for the following model:
FA <- lmer(Frontal_FA ~ poly(C) + A + B + D + (poly(C)||Subject), data = df)
However, when using the sjPlot package function
sjp.lmer(FA, type = "fe.slope")
I get the following error
Error in data.frame(x = model_data[[p_v]], y = resp) :
arguments imply differing number of rows: 0, 151
In addition: Warning message:
Insufficient length of color palette provided. 2 color values needed
I figure it may have to do with matrix structure of the output, so tried melting the str output with "reshape2", but without success. Is there a way to plot fixed effect slopes from the model output? Thanks in advance!
I think I've figured it out. The poly
term in the model seems to displace the the column containing the variable of interest (C) in the str
output of the model. Removing the poly
term in the model allows for the 'C' column to be identified by the sjPlot
code.