Search code examples
rdummy-variable

Tying new variable value to all responses by individual in long data


I'm using a longitudinal survey in long format, and I'm trying to create a dummy variable for if an individual has NOT got a college degree by the age of 25. My data looks something like this:

 ID   CYRB   VAR      VALUE
 1    1983   DEG98    1
 1    1983   DEG00    1 
 1    1983   DEG02    1
 1    1983   DEG04    0
 2    1979   DEG08    0
 2    1979   DEG00    0
 2    1979   DEG02    1
 2    1979   DEG04    1
 3    1978   DEG98    NA
 3    1978   DEG00    NA
 3    1978   DEG02    NA
 3    1978   DEG04    0

As I've tried to illustrate, there are quite a few missing data points for survey responses in the relevant years. But clearly if the respondent responds no in later years it can be inferred that they didn't have a degree when they were <25 either.

Trying to be as general as possible, how can I create a new variable that depends on all the variable values of just one individual, i.e. for ID = 1, 2, 3 etc.?

Sorry if I'm not clear!

Edit:

Sorry my fault, the data used to be in wide format and the variables denote whether the respondent has a college degree in 1998, 2000, 2002 etc. (with value denoting the response 1 == TRUE, 0 == FALSE), CYRB is indeed year of birth, the table edited for the expected output of my desired dummy variable would be:

 ID   CYRB   VAR      VALUE   DUMMY
 1    1983   DEG98    0       0
 1    1983   DEG00    0       0 
 1    1983   DEG02    0       0
 1    1983   DEG04    1       0
 2    1979   DEG08    0       0
 2    1979   DEG00    0       0
 2    1979   DEG02    1       0
 2    1979   DEG04    1       0
 3    1978   DEG98    NA      1
 3    1978   DEG00    NA      1
 3    1978   DEG02    NA      1
 3    1978   DEG04    0       1

i.e. if the respondent replies in any survey from the age of 25 onwards that he/she does not have a college degree the dummy takes the value of 1.

Hope this is a bit clearer.


Solution

  • Assuming you meant "DEG98" in the first row for ID 2:

    First, recover the respondent's age:

    d$survey_year <- as.numeric(sapply(d$VAR, substring, 4, 5))
    d$survey_year <- ifelse(d$survey_year<20, 2000+d$survey_year, 1900+d$survey_year)
    d$age <- d$survey_year - d$CYRB
    

    Use the any() function to test your criteria:

    degree <- data.frame(DUMMY=c(
        by(d, d$ID, function(x) any(x$VALUE==0 & x$age>25))))
    degree$ID <- rownames(degree)
    

    Combine the dummy values with the original dataframe:

    out <- merge(d[,c("ID", "CYRB", "VAR", "VALUE")], degree, all.x=TRUE)
    

    Output:

    > out
       ID CYRB   VAR VALUE DUMMY
    1   1 1983 DEG98     0 FALSE
    2   1 1983 DEG00     0 FALSE
    3   1 1983 DEG02     0 FALSE
    4   1 1983 DEG04     1 FALSE
    5   2 1979 DEG98     0 FALSE
    6   2 1979 DEG00     0 FALSE
    7   2 1979 DEG02     1 FALSE
    8   2 1979 DEG04     1 FALSE
    9   3 1978 DEG98    NA  TRUE
    10  3 1978 DEG00    NA  TRUE
    11  3 1978 DEG02    NA  TRUE
    12  3 1978 DEG04     0  TRUE
    

    EDIT: A more parsimonious solution using the dplyr package. First, write a getYear() function to convert DEGxx to the actual year:

    getYear <- function(x) {
        x <- as.numeric(substring(x, 4, 5))
        ifelse(x<16, 2000+x, 1900+x)
    }
    

    Then transform the dataset:

    library(dplyr)
    d %>% group_by(ID) %>%
      mutate(survey_year=getYear(VAR),
        age=survey_year - CYRB,
        DUMMY=any(VALUE==0 & age>25))
    

    Output:

    Source: local data frame [12 x 7]
    Groups: ID [3]
    
          ID  CYRB    VAR VALUE DUMMY survey_year   age
       (int) (int) (fctr) (int) (lgl)       (dbl) (dbl)
    1      1  1983  DEG98     0 FALSE        1998    15
    2      1  1983  DEG00     0 FALSE        2000    17
    3      1  1983  DEG02     0 FALSE        2002    19
    4      1  1983  DEG04     1 FALSE        2004    21
    5      2  1979  DEG98     0 FALSE        1998    19
    6      2  1979  DEG00     0 FALSE        2000    21
    7      2  1979  DEG02     1 FALSE        2002    23
    8      2  1979  DEG04     1 FALSE        2004    25
    9      3  1978  DEG98    NA  TRUE        1998    20
    10     3  1978  DEG00    NA  TRUE        2000    22
    11     3  1978  DEG02    NA  TRUE        2002    24
    12     3  1978  DEG04     0  TRUE        2004    26