Say I have functions
g :: a -> b, h :: a -> c
and
f :: b -> c -> d.
Is it possible to write the function
f' :: a -> a -> d
given by
f' x y = f (g x) (h y)
in point free style?.
One can write the function
f' a -> d, f' x = f (g x) (h x)
in point free style by setting
f' = (f <$> g) <*> h
but I couldn't figure out how to do the more general case.
We have:
k x y = (f (g x)) (h y)
and we wish to write k
in point-free style.
The first argument passed to k
is x
. What do we need to do with x
? Well, first we need to call g
on it, and then f
, and then do something fancy to apply this to (h y)
.
k = fancy . f . g
What is this fancy
? Well:
k x y = (fancy . f . g) x y
= fancy (f (g x)) y
= f (g x) (h y)
So we desire fancy z y = z (h y)
. Eta-reducing, we get fancy z = z . h
, or fancy = (. h)
.
k = (. h) . f . g
A more natural way to think about it might be
┌───┐ ┌───┐
x ───│ g │─── g x ───│ │
/ └───┘ │ │
(x, y) │ f │─── f (g x) (h y)
\ ┌───┐ │ │
y ───│ h │─── h y ───│ │
└───┘ └───┘
└──────────────────────────────┘
k
Enter Control.Arrow
:
k = curry ((g *** h) >>> uncurry f)