For a problem X to be NP-complete, it has to satisfy:
- X is in NP, given a solution to X, the solution can be verified in polynomial time.
- X is in NP-hard, that is, every NP problem is reduceable to it in polynomial time (you can do this through a reduction from a known NP-hard problem (e.g. Hamiltonian Path)).
There are two versions of the The Travelling Salesman Problem (TSP):
- The optimization version (probably the one you are looking at), namely, find the optimum solution to the TSP. This is not a decision problem, and hence cannot be in NP, but it is however in NP-hard which can be proven via a Hamiltonian Path reduction. Therefore this isn't an NP complete problem.
- The decision version - given an integer K is there a path through every vertex in the graph of length < K? This is a decision (yes/no) problem, and a solution can be verified in polynomial time (just traverse the path and see if it touches every vertex) and so it is in NP, but it is also in NP-hard (by an identical proof as above). Since it satisfies both requirements for NP-completeness, it is an NP-complete problem.