Suppose I have an int x = 54897
, old digit index (0 based), and the new value for that digit. What's the fastest way to get the new value?
Example
x = 54897
index = 3
value = 2
y = f(x, index, value) // => 54827
Edit: by fastest, I definitely mean faster performance. No string processing.
In simplest case (considering the digits are numbered from LSB to MSB, the first one being 0) AND knowing the old digit, we could do as simple as that:
num += (new_digit - old_digit) * 10**pos;
For the real problem we would need:
1) the MSB-first version of the pos
, that could cost you a log()
or at most log10(MAX_INT)
divisions by ten (could be improved using binary search).
2) the digit from that pos
that would need at most 2 divisions (or zero, using results from step 1).
You could also use the special fpu instruction from x86 that is able to save a float in BCD (I have no idea how slow it is).
UPDATE: the first step could be done even faster, without any divisions, with a binary search like this:
int my_log10(unsigned short n){
// short: 0.. 64k -> 1.. 5 digits
if (n < 1000){ // 1..3
if (n < 10) return 1;
if (n < 100) return 2;
return 3;
} else { // 4..5
if (n < 10000) return 4;
return 5;
}
}