Search code examples
rregressionstataleast-squares

Two stage least square in R


I want to run a two stage probit least square regression in R. Does anyone know how to do this? Is there any package out there? I know it's possible to do it using Stata, so I imagine it's possible to do it with R.


Solution

  • You might want to be more specific when you say 'two-stage-probit-least-squares'. Since you refer to a Stata program that implements this I am guessing you are talking about the CDSIMEQ package, which implements the Amemiya (1978) procedure for the Heckit model (a.k.a Generalized Tobit, a.k.a. Tobit type II model, etc.). As Grant said, systemfit will do a Tobit for you, but not with two equations. The MicEcon package did have a Heckit (but the package has split so many times I don't know where it is now).

    If you want what the CDSIMEQ does, it can easily be implemented in R. I wrote a function that replicates CDSIMEQ:

    tspls <- function(formula1, formula2, data) {
        # The Continous model
        mf1 <- model.frame(formula1, data)
        y1 <- model.response(mf1)
        x1 <- model.matrix(attr(mf1, "terms"), mf1)
    
        # The dicontionous model
        mf2 <- model.frame(formula2, data)
        y2 <- model.response(mf2)
        x2 <- model.matrix(attr(mf2, "terms"), mf2)
    
        # The matrix of all the exogenous variables
        X <- cbind(x1, x2)
        X <- X[, unique(colnames(X))]
    
        J1 <- matrix(0, nrow = ncol(X), ncol = ncol(x1))
        J2 <- matrix(0, nrow = ncol(X), ncol = ncol(x2))
        for (i in 1:ncol(x1)) J1[match(colnames(x1)[i], colnames(X)), i] <- 1
        for (i in 1:ncol(x2)) J2[match(colnames(x2)[i], colnames(X)), i] <- 1
    
        # Step 1:
        cat("\n\tNOW THE FIRST STAGE REGRESSION")
        m1 <- lm(y1 ~ X - 1)
        m2 <- glm(y2 ~ X - 1, family = binomial(link = "probit"))
        print(summary(m1))
        print(summary(m2))
    
        yhat1 <- m1$fitted.values
        yhat2 <- X %*% coef(m2)
    
        PI1 <- m1$coefficients
        PI2 <- m2$coefficients
        V0 <- vcov(m2)
        sigma1sq <- sum(m1$residuals ^ 2) / m1$df.residual
        sigma12 <- 1 / length(y2) * sum(y2 * m1$residuals / dnorm(yhat2))
    
        # Step 2:
        cat("\n\tNOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS")
    
        m1 <- lm(y1 ~ yhat2 + x1 - 1)
        m2 <- glm(y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit"))
        sm1 <- summary(m1)
        sm2 <- summary(m2)
        print(sm1)
        print(sm2)
    
        # Step  3:
        cat("\tNOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS\n\n")
        gamma1 <- m1$coefficients[1]
        gamma2 <- m2$coefficients[1]
    
        cc <- sigma1sq - 2 * gamma1 * sigma12
        dd <- gamma2 ^ 2 * sigma1sq - 2 * gamma2 * sigma12
        H <- cbind(PI2, J1)
        G <- cbind(PI1, J2)
    
        XX <- crossprod(X)                          # X'X
        HXXH <- solve(t(H) %*% XX %*% H)            # (H'X'XH)^(-1)
        HXXVXXH <- t(H) %*% XX %*% V0 %*% XX %*% H  # H'X'V0X'XH
        Valpha1 <- cc * HXXH + gamma1 ^ 2 * HXXH %*% HXXVXXH %*% HXXH
    
        GV <- t(G) %*% solve(V0)    # G'V0^(-1)
        GVG <- solve(GV %*% G)      # (G'V0^(-1)G)^(-1)
        Valpha2 <- GVG + dd * GVG %*% GV %*% solve(XX) %*% solve(V0) %*% G %*% GVG
    
        ans1 <- coef(sm1)
        ans2 <- coef(sm2)
    
        ans1[,2] <- sqrt(diag(Valpha1))
        ans2[,2] <- sqrt(diag(Valpha2))
        ans1[,3] <- ans1[,1] / ans1[,2]
        ans2[,3] <- ans2[,1] / ans2[,2]
        ans1[,4] <- 2 * pt(abs(ans1[,3]), m1$df.residual, lower.tail = FALSE)
        ans2[,4] <- 2 * pnorm(abs(ans2[,3]), lower.tail = FALSE)
    
        cat("Continuous:\n")
        print(ans1)
        cat("Dichotomous:\n")
        print(ans2)
    }
    

    For comparison, we can replicate the sample from the author of CDSIMEQ in their article about the package.

    > library(foreign)
    > cdsimeq <- read.dta("http://www.stata-journal.com/software/sj3-2/st0038/cdsimeq.dta")
    > tspls(continuous ~ exog3 + exog2 + exog1 + exog4,
    +     dichotomous ~ exog1 + exog2 + exog5 + exog6 + exog7,
    +     data = cdsimeq)
    
            NOW THE FIRST STAGE REGRESSION
    Call:
    lm(formula = y1 ~ X - 1)
    
    Residuals:
          Min        1Q    Median        3Q       Max 
    -1.885921 -0.438579 -0.006262  0.432156  2.133738 
    
    Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
    X(Intercept)  0.010752   0.020620   0.521 0.602187    
    Xexog3        0.158469   0.021862   7.249 8.46e-13 ***
    Xexog2       -0.009669   0.021666  -0.446 0.655488    
    Xexog1        0.159955   0.021260   7.524 1.19e-13 ***
    Xexog4        0.316575   0.022456  14.097  < 2e-16 ***
    Xexog5        0.497207   0.021356  23.282  < 2e-16 ***
    Xexog6       -0.078017   0.021755  -3.586 0.000352 ***
    Xexog7        0.161177   0.022103   7.292 6.23e-13 ***
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
    
    Residual standard error: 0.6488 on 992 degrees of freedom
    Multiple R-squared: 0.5972,     Adjusted R-squared: 0.594 
    F-statistic: 183.9 on 8 and 992 DF,  p-value: < 2.2e-16 
    
    
    Call:
    glm(formula = y2 ~ X - 1, family = binomial(link = "probit"))
    
    Deviance Residuals: 
         Min        1Q    Median        3Q       Max  
    -2.49531  -0.59244   0.01983   0.59708   2.41810  
    
    Coefficients:
                 Estimate Std. Error z value Pr(>|z|)    
    X(Intercept)  0.08352    0.05280   1.582 0.113692    
    Xexog3        0.21345    0.05678   3.759 0.000170 ***
    Xexog2        0.21131    0.05471   3.862 0.000112 ***
    Xexog1        0.45591    0.06023   7.570 3.75e-14 ***
    Xexog4        0.39031    0.06173   6.322 2.57e-10 ***
    Xexog5        0.75955    0.06427  11.818  < 2e-16 ***
    Xexog6        0.85461    0.06831  12.510  < 2e-16 ***
    Xexog7       -0.16691    0.05653  -2.953 0.003152 ** 
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
    
    (Dispersion parameter for binomial family taken to be 1)
    
        Null deviance: 1386.29  on 1000  degrees of freedom
    Residual deviance:  754.14  on  992  degrees of freedom
    AIC: 770.14
    
    Number of Fisher Scoring iterations: 6
    
    
            NOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS
    Call:
    lm(formula = y1 ~ yhat2 + x1 - 1)
    
    Residuals:
         Min       1Q   Median       3Q      Max 
    -2.32152 -0.53160  0.04886  0.53502  2.44818 
    
    Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
    yhat2         0.257592   0.021451  12.009   <2e-16 ***
    x1(Intercept) 0.012185   0.024809   0.491    0.623    
    x1exog3       0.042520   0.026735   1.590    0.112    
    x1exog2       0.011854   0.026723   0.444    0.657    
    x1exog1       0.007773   0.028217   0.275    0.783    
    x1exog4       0.318636   0.028311  11.255   <2e-16 ***
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
    
    Residual standard error: 0.7803 on 994 degrees of freedom
    Multiple R-squared: 0.4163,     Adjusted R-squared: 0.4128 
    F-statistic: 118.2 on 6 and 994 DF,  p-value: < 2.2e-16 
    
    
    Call:
    glm(formula = y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit"))
    
    Deviance Residuals: 
         Min        1Q    Median        3Q       Max  
    -2.49610  -0.58595   0.01969   0.59857   2.41281  
    
    Coefficients:
                  Estimate Std. Error z value Pr(>|z|)    
    yhat1          1.26287    0.16061   7.863 3.75e-15 ***
    x2(Intercept)  0.07080    0.05276   1.342 0.179654    
    x2exog1        0.25093    0.06466   3.880 0.000104 ***
    x2exog2        0.22604    0.05389   4.194 2.74e-05 ***
    x2exog5        0.12912    0.09510   1.358 0.174544    
    x2exog6        0.95609    0.07172  13.331  < 2e-16 ***
    x2exog7       -0.37128    0.06759  -5.493 3.94e-08 ***
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
    
    (Dispersion parameter for binomial family taken to be 1)
    
        Null deviance: 1386.29  on 1000  degrees of freedom
    Residual deviance:  754.21  on  993  degrees of freedom
    AIC: 768.21
    
    Number of Fisher Scoring iterations: 6
    
            NOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS
    
    Continuous:
                    Estimate Std. Error    t value   Pr(>|t|)
    yhat2         0.25759209  0.1043073 2.46955009 0.01369540
    x1(Intercept) 0.01218500  0.1198713 0.10165068 0.91905445
    x1exog3       0.04252006  0.1291588 0.32920764 0.74206810
    x1exog2       0.01185438  0.1290754 0.09184073 0.92684309
    x1exog1       0.00777347  0.1363643 0.05700519 0.95455252
    x1exog4       0.31863627  0.1367881 2.32941597 0.02003661
    Dichotomous:
                     Estimate Std. Error    z value     Pr(>|z|)
    yhat1          1.26286574  0.7395166  1.7076909 0.0876937093
    x2(Intercept)  0.07079775  0.2666447  0.2655134 0.7906139867
    x2exog1        0.25092561  0.3126763  0.8025092 0.4222584495
    x2exog2        0.22603717  0.2739307  0.8251618 0.4092797527
    x2exog5        0.12911922  0.4822986  0.2677163 0.7889176766
    x2exog6        0.95609385  0.2823662  3.3860070 0.0007091758
    x2exog7       -0.37128221  0.3265478 -1.1369920 0.2555416141