I have written the following MWE using dendextend (vignette):
library(cluster)
library(ggdendro)
library(dendextend)
d1 <- c(paste(rep("firstcelltype",7),1:7,sep="_"), paste(rep("secondcelltype", 3),1:3,sep="_"))
d1.df <- as.data.frame(t(combn(d1,2)))
set.seed(1)
d1.df$DIST <- sample(1:100, 45)
dmat <- with(d1.df, structure(DIST,
Size = length(d1),
Labels = d1,
Diag = FALSE,
Upper = FALSE,
method = "user",
class = "dist"))
c1 <- hclust(dmat, method="complete")
dend <- as.dendrogram(c1)
vals <- grep("second", d1, val=TRUE)
dend <- dend %>% set("leaves_pch", 19) %>%
set("leaves_cex", 2) %>%
set("by_labels_branches_col", value = vals, TF_values = c(2,Inf)) %>%
set("by_labels_branches_lwd", value = vals, TF_values = c(4,2))
tiff("test.tiff")
mar.default <- c(5,4,4,2) + 0.1
par(mar = mar.default + c(0, 0, 0, 5))
plot(dend, main = "MY TITLE", xlab="my.X", horiz=TRUE)
dev.off()
What I do here is just create a distance matrix with all the possible combinations of my labels in "d1" and some random values as distances.
I make a dendrogram out of the hclust results, and save it in the following TIFF file:
As you see, I have been able to change the branches for "secondcelltype", but I need help to do the following, if it is even possible to do:
1 - Change "secondcelltype" leave node to a red square
2 - Change "secondcelltype" label to red (and maybe bold or italic)
3 - Change font everywhere to Arial
I would really appreciate some help here! If there is a better way to do this than with dendextend please let me know. Thanks!
Some responses:
1) You don't need ggdendro here
2) You need to use:
set("labels_colors", ifelse(ss_change, 2, 1)) %>%
set("leaves_pch", ifelse(ss_change, 15, 19)) %>%
set("leaves_col", ifelse(ss_change, 2, 1))
3) I can't see an Ariel option, but you can use Standard values like "serif", "sans" and "mono" by using par(family = "sans")
Here is a code that does what you asked for:
library(cluster)
library(dendextend)
d1 <- c(paste(rep("firstcelltype",7),1:7,sep="_"), paste(rep("secondcelltype", 3),1:3,sep="_"))
d1.df <- as.data.frame(t(combn(d1,2)))
set.seed(1)
d1.df$DIST <- sample(1:100, 45)
dmat <- with(d1.df, structure(DIST,
Size = length(d1),
Labels = d1,
Diag = FALSE,
Upper = FALSE,
method = "user",
class = "dist"))
c1 <- hclust(dmat, method="complete")
dend <- as.dendrogram(c1)
vals <- grep("second", d1, val=TRUE)
ss_change <- grepl("secondcelltype", labels(dend))
dend <- dend %>%
set("labels_colors", ifelse(ss_change, 2, 1)) %>%
set("leaves_pch", ifelse(ss_change, 15, 19)) %>%
set("leaves_col", ifelse(ss_change, 2, 1))
# str(unclass(dend))
# plot(dend)
dend <- dend %>%
set("leaves_cex", 2) %>%
set("by_labels_branches_col", value = vals, TF_values = c(2,Inf)) %>%
set("by_labels_branches_lwd", value = vals, TF_values = c(4,2))
par(family = "sans")
mar.default <- c(5,4,4,2) + 0.1
par(mar = mar.default + c(0, 0, 0, 5))
plot(dend, main = "MY TITLE", xlab="my.X", horiz=TRUE)